Contents lists available at ScienceDirect

Enhanced piezoelectric properties of Nb and Mn co-doped CaBi₄Ti₄O₁₅ high temperature piezoceramics

Zong-Yang Shen^{a,b}, Huajun Sun^{c,*}, Yanxue Tang^b, Yueming Li^a, Shujun Zhang^{b,*}

^a School of Materials Science and Engineering, Jiangxi Key Laboratory of Advanced Ceramic Materials, Jingdezhen Ceramic Institute, Jingdezhen 333403, China ^b Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA

^c School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

ARTICLE INFO

Article history: Received 18 March 2014 Received in revised form 19 October 2014 Accepted 30 November 2014 Available online xxx

Keywords: A. Ceramics B. Piezoelectricity D. Dielectric properties

1. Introduction

In last few decades, ferroelectric ceramics with bismuth layer structure have been actively studied for non-volatile random-access memory and high temperature piezoelectric applications, owing to their fatigue-free characteristics and high Curie temperature T_{c} , respectively [1-3]. The general formula of bismuth layer-structured ferroelectrics (BLSF) is $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$, which can be described as regular stacking of $(A_{m-1}B_mO_{3m+1})^{2-}$ pseudo-perovskite blocks, separated by fluorite-like $(Bi_2O_2)^{2+}$ layers along the *c* axis [4,5]. The $(Bi_2O_2)^{2+}$ act as insulating paraelectric layers, limiting the spontaneous polarization of BLSF materials in the a-bplane, i.e., the pseudo-perovskite $(A_{m-1}B_mO_{3m+1})^{2-}$ blocks. The pseudo-perovskite blocks can offer large possibilities in terms of compositional flexibility, which allow mono-, di-, trivalent element (e.g., Na^+ , K^+ , Ca^{2+} , Sr^{2+} , Ba^{2+} , Pb^{2+} , Bi^{3+} and La^{3+}), or a mixture of them on the A-site and a transition element (e.g., Fe^{3+} , Cr^{3+} , Ti^{4+} , Nb^{5+} , Ta^{5+} , Mo^{6+} and W^{6+}) on the B-site [6]. The number of $[BO_6]$ octahedra in the pseudo-perovskite blocks m (basically from 1 to 6) strongly affects the dielectric and ferroelectric properties of BLSF, because the spontaneous polarization arises from different modes of $[BO_6]$ octahedral rotation, where the displacement of the ions on the Bsite dominates the polarization component in the *a*-*b* plane of the pseudo-perovskite layers.

ABSTRACT

The properties of CaBi₄Ti₄O₁₅ (CBT), CaBi₄Ti_{3,95}Nb_{0.05}O₁₅ (CBTN) and CaBi₄Ti_{3,95}Nb_{0.05}O₁₅ + 0.2 wt% MnO₂ (CBTN–Mn) ferroelectric ceramics with bismuth layer structure were studied. Significant enhancement of piezoelectric coefficient was obtained for CBTN–Mn ceramics ($d_{33} = 23 \text{ pC/N}$), being nearly three times that of CBT counterpart ($d_{33} = 8 \text{ pC/N}$). Together with its high Curie temperature ($T_c = 790 \degree C$), low dielectric loss (tan $\delta = 0.2\%$), high resistivity ($\rho = 4.2 \times 10^6 \Omega \text{ cm}$ at 500 °C) and good thermal stability up to 700 °C, the CBTN–Mn ceramic is a potential material for high temperature piezoelectric applications.

CaBi₄Ti₄O₁₅ (CBT) belongs to the family of BLSF with m = 4, where Ca²⁺ and Bi³⁺ located at A-site, while Ti⁴⁺ occupied the B-site of the pseudo-perovskite blocks. Compared to other extensively studied BLSF ceramics with m = 4, such as Na_{0.5}Bi_{4.5}Ti₄O₁₅ ($T_c =$ 668 °C, $d_{33} = 17 \text{ pC/N}$ [7] and K_{0.5}Bi_{4.5}Ti₄O₁₅ ($T_c = 555 \degree$ C, $d_{33} = 21.2 \text{ pC/N}$ [8], CBT was reported to possess higher Curie temperature ($T_c = 790 \degree$ C) but much lower piezoelectric coefficient ($d_{33} = 8 \text{ pC/N}$) [9]. It was reported that (MCe)²⁺ (M = Li, Na, K) doped CBT ceramics can effectively enhance the piezoelectric coefficient up to 20 pC/N without sacrificing the Curie temperature [10,11]. However, the B-site modification of CBT ceramics, being expected to possess substantially increased d_{33} (>20 pC/N), has not yet been reported, which is the topic of this research.

The structure and properties of B-site Nb-doped and Nb/Mn codoped CBT ceramics were investigated and compared with pure CBT counterpart. Enhanced piezoelectric coefficient (d_{33} = 23 pC/N) was obtained in Nb/Mn co-doped CBT ceramics. Of particular importance is that the B-site modified CBT ceramics do not contain the alkali metals, such as in Na_{0.5}Bi_{4.5}Ti₄O₁₅, K_{0.5}Bi_{4.5}Ti₄O₁₅, and Asite (MCe)²⁺ (M = Li, Na, K) doped CBT, making the ceramic fabrication process easier.

2. Experimental procedures

Ceramic samples of CaBi₄Ti₄O₁₅ (CBT), CaBi₄Ti_{3.95}Nb_{0.05}O₁₅ (CBTN), and CaBi₄Ti_{3.95}Nb_{0.05}O₁₅ + 0.2 wt% MnO₂ (CBTN–Mn) were prepared by the solid state reaction method. Reagent-grade CaCO₃ (99.9%), Bi₂O₃ (99.9%), TiO₂ (99.9%), Nb₂O₅ (99.5%), and MnO₂ (99.9%) were selected as the starting raw materials. The raw

^{*} Corresponding authors. Tel.: +1 814 863 2639; fax: +1 814 865 7173. *E-mail addresses:* huajunsun@whut.edu.cn (H. Sun), soz1@psu.edu (S. Zhang).

Fig. 1. XRD patterns of the CBT, CBTN, and CBTN-Mn ceramics.

powders were mixed by ball milling with ethanol for 24 h, then dried and calcined at 800 °C for 2 h. A small amount of Rhoplex binder (1.0 wt%) was added in the calcined powders and milled again, dried and pressed into pellets. After the binder burn-out, the pellets were cold isostatic pressed and subsequently sintered at 1075–1175 °C for 2 h in air. The phase structure was determined by X-ray diffraction (XRD: X'Pert Pro PANalytical, CuKα radiation), which was analyzed by X'Pert HighScore software. The microstructure features of the polished and thermally-etched surfaces. as well as the fractured surfaces of the sintered ceramics were characterized by the field emission scanning electron microscopy (FE-SEM, JSM-5610LV; JEOL, Japan).

The obtained samples were parallel polished and painted with silver paste on both sides, then fired at 750°C to form the electrodes. The electrical resistivity was calculated from the resistance, which was measured using a source meter (Keithley 2410C) by applying 100V on the samples. The temperature dependence of the dielectric constant and loss at 100 kHz was determined by an LCR meter (HP4194A, Hewlett-Packard, CA) with the temperature increasing from 30 to 850 °C. For the piezoelectric

Fig. 2. SEM images of thermally-etched and fractured surfaces of the (a,b) CBT, (c,d) CBTN, and (e,f) CBTN-Mn ceramics.

fractured surface

Download English Version:

https://daneshyari.com/en/article/7905688

Download Persian Version:

https://daneshyari.com/article/7905688

Daneshyari.com