

Available online at www.sciencedirect.com

REVUE INTERNATIONALE DU FROID INTERNATIONAL JOURNAL OF refrigeration

International Journal of Refrigeration 30 (2007) 1227-1243

www.elsevier.com/locate/ijrefrig

Modeling and performance analyses of evaporators in frozen-food supermarket display cabinets at low temperatures

H.M. Getu, P.K. Bansal*

Department of Mechanical Engineering, The University of Auckland, Private Bag 92019, Auckland, New Zealand

Received 7 July 2006; received in revised form 25 January 2007; accepted 9 February 2007 Available online 23 February 2007

Abstract

This paper presents modeling and experimental analyses of evaporators in "in situ" frozen-food display cabinets at low temperatures in the supermarket industry. Extensive experiments were conducted to measure store and display cabinet relative humidities and temperatures, and pressures, temperatures and mass flow rates of the refrigerant. The mathematical model adopts various empirical correlations of heat transfer coefficients and frost properties in a fin-tube heat exchanger in order to investigate the influence of indoor conditions on the performance of the display cabinets. The model is validated with the experimental data of "in situ" cabinets. The model would be a good guide tool to the design engineers to evaluate the performance of supermarket display cabinet heat exchangers under various store conditions.

© 2007 Elsevier Ltd and IIR. All rights reserved.

Keywords: Frozen product; Display cabinet; Evaporator; Modelling; Simulation; Flow; Refrigerant; Temperature; Relative humidity; Pressure; Frost

Modélisation et analyse de la performance des évaporateurs utilisés dans les meubles de vente de supermarché employés pour les surgelés

Mots clés : Produit congelé ; Meuble de vente ; Évaporateur ; Modélisation ; Simulation ; Débit ; Frigorigène ; Température ; Humidité relative ; Pression ; Givrage

1. Introduction

Supermarket refrigeration systems, mainly refrigerated display cases, consume roughly 20% of the total energy use of the store (Getu [1]). The field (defrosting, anti-sweat resistance heaters, display cabinet lights and fans) energy consumption contributes to an additional 14%. The energy consumption due to the air-conditioning system of the building is as much as 17% of the entire energy use of the supermarket. The rest of the supermarket energy use, which is around 49% attributes to water heating and lighting systems of the establishment. Supermarkets often use multicompressor systems/racks, which are situated in remote machine rooms. The compressors operate in parallel at the same saturated suction temperature, and are piped with

^{*} Corresponding author. Tel.: +64 9 373 7599x88176; fax: +64 9 373 7479.

E-mail address: p.bansal@auckland.ac.nz (P.K. Bansal).

^{0140-7007/\$35.00 © 2007} Elsevier Ltd and IIR. All rights reserved. doi:10.1016/j.ijrefrig.2007.02.003

Nomenclature

A_{f}	fin surface area [m ²]
$A_{\rm reg,tube}$	bare tube surface area of superheated/
² reg,tube	two-phase region [m ²]
$A_{\rm reg,i}$	internal tube surface area of superheated/
reg,1	two-phase region [m ²]
A _{reg,o}	overall surface area of superheated/two-phase
reg,o	region $[m^2]$
$A_{\rm sp}$	air-side total surface area in superheated region
sp	[m ²]
$A_{\rm tp}$	air-side total surface area in two-phase region
Ψ	$[m^2]$
$A_{\rm total}$	air-side total surface area [m ²]
С	ratio of minimum to maximum capacity rate of
	heat exchanging fluids [-]
$C_{\rm a}$	capacity rate of air $[W K^{-1}]$
C_{\max}	maximum heat capacity rate $[W K^{-1}]$
C_{\min}	minimum heat capacity rate $[W K^{-1}]$
$C_{\rm r}$	capacity rate of refrigerant [W K ⁻¹]
$C_{\rm p}$	specific heat at constant pressure $[kJ kg^{-1} K^{-1}]$
D	diameter [m]
D_{H}	frosted hydraulic diameter [m]
f	friction factor [dimensionless]
$f_{\rm f}$	friction factor due to fins
f_{t}	friction factor due to tubes
Fo _{DH} GFF	Fourier number based on frosted surface [-] glass-door-frozen-food
GFF G	mass flux [kg s ^{-1} m ^{-2}]
h h	enthalpy [J kg ⁻¹]/heat transfer coefficient
п	$[W m^{-2} K^{-1}]$
$h_{\rm c}$	fin-tube contact conductance $[W m^{-2} K^{-1}]$
$h_{\rm f,a}$	air-side fouling conductance $[W m^{-2} K^{-1}]$
$h_{\rm f,ref}$	refrigerant-side fouling conductance
, .	$[W m^{-2} K^{-1}]$
$h_{\rm sg}$	sublimation latent heat $[J kg^{-1}]$
I_0	modified zero-order Bessel function of the first
	kind [-]
K_0	modified zero-order Bessel function of the
	second kind [–]
I_1	modified first-order Bessel function of the first
	kind [-]
K_1	modified first-order Bessel function of the
	second kind [–]
j	colburn factor conductivity [W $m^{-1} K^{-1}$]
k L	
L $L_{\rm D}$	length [m] frost length in the direction of air flow [m]
	tube length in superheated/two-phase region
$L_{\rm reg}$	[m]
Lewis	Lewis number [-]
m	mass [kg]/constant [-]
'n	mass flow rate $[kg s^{-1}]$
m _{fst}	frost mass accumulation [kg m ^{-2}]

$N_{\rm t}$	total number of tubes	
NTU	number of transfer units [dimensionless]	
Nu	Nusselt number [dimensionless]	
P	pressure [Pa]	
$Pr_{\rm D}$	Prandtl number based on tube inside diameter	
$Pr_{\rm DH}$	Prandtl number based on frosted surface [-]	
ġ.	rate of heat transfer [W]	
$r_{\rm f}$	fin tip radius [m]	
ro	tube outer radius [m]	
Re	Reynolds number [dimensionless]	
$Re_{\rm D}$	Reynolds number based on tube inside	
	diameter	
$Re_{\rm DH}$	Reynolds number based on frosted surface [-]	
RH	relative humidity [%]	
$S_{\rm F}$	fin spacing [fin m^{-1}]	
$S_{\rm L}$	longitudinal tube spacing [m]	
S_{T}	transverse tube spacing [m]	
t	time [s]/thickness [m]	
Т	temperature [°C]	
Ti	the temperature difference between triple point	
	and coil surface [K]	
TFF	through-frozen-food	
U	overall heat transfer coefficient $[W/m^{-2}k^{-1}]$	
X	quality [dimensionless]	
Greek l	etters	
Δ	change [-]	
ε	heat exchanger effectiveness [-]	
arphi	efficiency [-]	
ω	humidity ratio [kg moisture/kg dry air]	
ω_{∞}	free air stream humidity ratio [kg/kg]	
ρ	density $[kg m^{-3}]$	
ς	constant [dimensionless]	
μ	viscosity [kg s ^{-1} m ^{-1}]	
Subscripts		
а	air	
ave	average	
ain	air inlet	
aout	air outlet	
case	display cabinet	
D	tube diameter	
e	evaporator	
ein	evaporator inlet	
eout	evaporator outlet	
exvin	expansion valve inlet	
f f-t	liquid refrigerant/fin	
fst	frost	
i	inner	
ice	ice inlet	
in lot	inlet	
lat	latent	

Download English Version:

https://daneshyari.com/en/article/790631

Download Persian Version:

https://daneshyari.com/article/790631

Daneshyari.com