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a b s t r a c t

The ratchet and shakedown boundaries are derived analytically for a thin cylinder composed of elastic-
perfectly plastic Tresca material subject to constant internal pressure with capped ends, plus an addi-
tional constant axial load, F, and a cycling secondary global bending load. The analytic solution is in good
agreement with solutions found using the linear matching method. When F is tensile, ratcheting can
occur for sufficiently large cyclic bending loads in which the pipe gets longer and thinner but its diameter
remains the same. When F is compressive, ratcheting can occur in which the pipe diameter increases and
the pipe gets shorter, but its wall thickness remains the same. When subject to internal pressure and
cyclic bending alone (F ¼ 0), no ratcheting is possible, even for arbitrarily large bending loads, despite the
presence of the axial pressure load. The reason is that the case with a primary axial membrane stress
exactly equal to half the primary hoop membrane stress is equipoised between tensile and compressive
axial ratcheting, and hence does not ratchet at all. This remarkable result appears to have escaped
previous attention.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A structure subject to two or more types of loading, at least one
of which is primary and at least one of which is cycling, may
potentially accumulate deformationwhich increases cycle on cycle.
This is ratcheting. Rather less severe loading may result in parts of
the structure undergoing plastic cycling, involving a hysteresis loop
in stressestrain space, but without accumulating ratchet strains.
Still less severe loading may result in purely elastic cycling, perhaps
after some initial plasticity on the first few cycles. This is shake-
down. It is desirable that engineering structures be in the shake-
down regime since ratcheting is a severe condition leading
potentially to failure. The intermediate case of stable plastic cycling
may be structurally acceptable but will involve the engineer in non-
trivial assessments to demonstrate acceptability, probably
involving the possibility of cracks being initiated by the repeated
plastic straining (by fatigue).

Deciding which of the three types of behaviour results from a
given loading sequence on a given structure is, therefore, of

considerable importance. Unfortunately ratcheting/shakedown
problems are difficult to solve analytically in the general case.
However, analytical solutions for sufficiently simple geometries
and loadings do exist. One of the earliest, and undoubtedly the
most influential, of these is the Bree problem, Ref. [1]. Bree's ana-
lytic solution addresses uniaxial loading of a rectangular cross
section in an elastic-perfectly plastic material, the loading con-
sisting of a constant primary membrane stress and a secondary
bending load which cycles between zero and some maximum.
When normalised by the yield stress, the primary membrane stress
is denoted X whilst the normalised secondary elastic outer fibre
bending stress range is denoted Y.

The ratchet boundary is defined as the curve on an X, Y plot
above which ratcheting occurs. Similarly, the shakedown boundary
is defined as the curve on the X, Y plot below which shakedown to
elastic cycling occurs. The two curves may or may not be separated
by a region of stable plastic cycling. In obvious notation, the three
types of region are denoted R, S and P. Variants on the Bree problem
which have been solved analytically include, (i) the case when the
primary membrane load also cycles, either strictly in-phase or
strictly in anti-phase with the secondary bending load, Refs. [2e4],
(ii) the Bree problemwith different yield stresses at the two ends of
the load cycle, Ref. [5], and, (iii) the Bree problem with biaxial
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stressing of a flat plate, an extra primary membrane load being
introduced perpendicular to the Bree loadings, Ref. [6]. The ana-
lyses in Refs. [2e6] used the same approach as Bree's original
analysis, Ref. [1]. However, alternative, “non-cycling”, methods for
analytical ratchet boundary determination are also emerging, e.g.,
Refs. [7,8].

The difficulty of obtaining analytic solutions for more compli-
cated geometries or loadings has prompted the development of
numerical techniques to address ratcheting and shakedown. For
example, direct cyclic analysis methods, e.g., Ref. [9], can calculate
the stabilised steady-state response of structures with far less
computational effort than full step-by-step analysis. A technique
which is now being used widely is the Linear Matching Method
(LMM), e.g., Ref. [10]. LMM is distinguished from other simplified
methods in ensuring that both equilibrium and compatibility are
satisfied at each stage.

This paper presents a Bree-type analysis of the ratchet and
shakedown boundaries for the case of a thin cylinder composed of
elastic-perfectly plastic material with internal pressure and capped
ends, plus an additional axial load (F), together with a global
bending load. The pressure and additional axial loads are constant
primary loads. The global bending is secondary in nature and cy-
cles. The global bending load is envisaged as arising from a uniform
diametral temperature gradient with bending of the pipe being
restrained. The temperature gradient cycles between zero and
some maximum value. Loadings of this type are common in engi-
neering practice. For example, AGR reactor penetrations can
develop such diametral temperature gradients. Moreover, ther-
mally driven, cyclic global bending stresses occur generically in
steam pipework of any kind.

After developing the analytic solution for the ratchet and
shakedown boundaries, the solution is verified by use of the LMM
technique. (Alternatively this may be seen as a validation of the
LMM technique).

Section 2 formulates the equations which specify the problem.
Section 3 defines normalised, dimensionless quantities which will
be used throughout the rest of the paper. Section 4 describes the
method of solution. Sections 5 and 6 present the solution for the
case of tensile ratcheting in the axial direction. Section 7 completes
the solution, considering shakedown and stable plastic cycling as
well as compressive ratcheting in the axial direction. Section 8
describes the numerical analyses carried out using the LMM
method, and finally the key results are summarised in the Con-
clusions, Section 9.

2. Formulation of the problem

The notation for stresses and strains in this sectionwill include a
tilde, e.g., ~s, to distinguish them from the normalised, dimension-
less quantities which will be used hereafter. Geometrical linearity,
i.e., small strain theory, is assumed.

The problem considers a thin cylinder so that through-wall
stress variations may be neglected. The cylinder is under internal
pressure, P, and an axial load, F. Note that capped ends ensure that
the pressure load also contributes to the total axial load. Both these
primary loads are constant (i.e., not cycling). The cylinder wall is
therefore subject to a constant hoop stress, which is uniform
around the circumference, of,

~sH ¼ Pr
t

(1)

where r, t are the cylinder radius and thickness respectively. The
integral of the axial stress around the cylinder circumference
equilibrates the applied axial load plus the axial pressure load,

FTOT ¼ F þ pr2P ¼
Z

~s$rtdq (2)

where ~s is the axial stress at the angular position q around the
circumference, and the integral is carried out over the whole
circumference. Equ. (2) holds at all times since the pressure and the
additional axial load are constant.

The axial stress is not uniform around the circumference as a
consequence of the cycling secondary bending load. This bending
load is envisaged as arising due to a uniform diametral temperature
gradient, i.e., a temperaturewhich varies linearly with the Cartesian
coordinate ~x perpendicular to the cylinder axis. Bending of the
cylinder is taken to be restrained so that the temperature gradient
generates a secondary bending stress. The origin of ~x is taken to be
the cylinder axis. The elastically calculated bending stress is
denoted ~sb, and its tensile side is taken to be ~x>0. Hence the elastic
bending stress distribution across the pipe diameter would be
~sb~x=r where �r � ~x � r. This secondary bending load cycles be-
tween zero and its maximum value and back again repeatedly.

The material is taken to be elastic-perfectly plastic with yield
strength sy. This is a common simplifying assumption in such
ratcheting analyses, without which the problem would not be
analytically tractable. The Tresca yield criterion is assumed, again
for analytic simplicity. Throughout it will be assumed that the
compressive radial stress on the inner surface is negligible
compared with the other stresses, i.e., the thin shell limit. Stressing
is therefore biaxial.

The hoop stress is necessarily less than yield, ~sH < sy otherwise
the cylinder collapses. It is worth spelling out why this remains true
for this situation of biaxial stressing. Possible cases are.

� If the axial stress, ~s, is positive but less than ~sH then the Tresca
yield criterion is just ~sH ¼ sy;

� If the axial stress, ~s, is positive and greater than ~sH then the
Tresca yield criterion is just ~s ¼ sy and hence yielding occurs
with ~sH <sy;

� If the axial stress, ~s, is negative then the Tresca yield criterion is
~sH � ~s ¼ sy and hence yielding again occurs with ~sH < sy.

In all cases, therefore, avoidance of collapse requires ~sH <sy as a
necessary but not sufficient condition. Consequently, if ~sH <sy is
assumed, in regions where the axial stress, ~s, is positive, the yield
criterion can be taken to be simply ~s ¼ sy. In regions where the
axial stress, ~s, is negative, the yield criterion becomes ~s ¼ �sy þ ~sH .
Defining the positive quantity s0y ¼ sy � ~sH, the yield criteria are,

For ~s>0: ~s ¼ sy (3a)

For ~s<0: ~s ¼ �s0y (3b)

The dimensionless parameter a is defined as,

a ¼ s0y
sy

¼ 1� ~sH
sy

(4)

Thus, a quantifies the influence of the hoop stress on the
ratcheting behaviour.

Consistent with commonpractice for similar ratcheting analyses
the results will be expressed in terms of the following dimen-
sionless load parameters,

X ¼ FTOT
2prtsy

Y ¼ ~sb
sy

(5)

Because bending of the cylinder is restrained by assumption, the
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