

Eu³⁺ doped self-activated Ca₈ZrMg(PO₄)₆(SiO₄) phosphor with tunable luminescence properties

Fengping Ruan, Degang Deng*, Ming Wu, Bowen Chen, Chengxiao Wu, Shiqing Xu**

College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China

ARTICLE INFO

Keywords:
Phosphor
Self-activated
Energy transfer

ABSTRACT:

Single-host white-light emission phosphors stand a good chance to serve in the next-generation high-power white light emitting diodes. Eu³⁺-doped self-activated Ca₈ZrMg(PO₄)₆(SiO₄) phosphor was synthesized by a high temperature solid-state reaction which can realize white light emission by tuning spectrum. The analysis of XRD, SEM, UV-vis DRS, luminescent spectra, and emission dynamic curves were applied to investigate the obtained samples. Upon 295 nm excitation, the Ca₈ZrMg(PO₄)₆(SiO₄): Eu³⁺ phosphors contain two dominating bands peaked at 470 and 615 nm, which are attributed to the charge transfer (CT) transition from Zr⁴⁺ to O²⁻ and the characteristic transition ⁵D₀→⁷F₂ of the Eu³⁺ ions, respectively. In view of the energy transfer between Zr-O CT and Eu³⁺ ions, the chromaticity coordinates of Ca₈ZrMg(PO₄)₆(SiO₄): Eu³⁺ phosphors can be tuned from (0.2186, 0.2858) to (0.5413, 0.3295). Present work indicates that the novel Ca₈ZrMg(PO₄)₆(SiO₄) is a promising candidate as a single-host white phosphor with an excellent thermal stability for optical display applications.

1. Introduction

The phosphors with white-light emission have attracted much attention for their applications in optical display fields. The white-light emission can be generated in single-host phosphors through single-doping a type of activator or co-doping with sensitizer and activator *via* energy transfer processes [1], for examples, Zn₂SiO₄: RE³⁺ (Eu, Dy, Sm) [2], Ca₁₉Ce(PO₄)₁₄: Tb³⁺, Mn²⁺ [3], Ca₉Lu(PO₄)₇: Eu²⁺, Mn²⁺ [4], Li₂SiO₄: Ce³⁺, Tb³⁺, Eu³⁺ [5], and so on. As a consequence, a single-host white-emitting phosphor is considered to be potentially useful because of small color aberration, high color rendering, and low cost [6].

In recent years, the broad UV-visible emissions have been reported in single-host phosphors with tetravalent (M⁴⁺) cations, such as Zr⁴⁺, Ce⁴⁺, and Ti⁴⁺ in which the M⁴⁺-O²⁻ charge transfer (M – O CT) transition is responsible for the emissions [7–12]. The M – O CT transition takes place uniquely from the M⁴⁺ ions with octahedral coordination of oxygen ions [1]. The luminescence properties and their applications of the Zr⁴⁺-containing phosphors have already been studied due to the fact that the excitation bands of the Zr⁴⁺-O²⁻ groups are usually located at very short wavelength region [13], for instance, CaZr(PO₄)₂, Ca₂ZrSi₄O₁₂, and ZrSiO₄ show the emission in the wavelength region 280–380 nm under excitation by the UV-VUV light

(130–250 nm) [11] or the X-ray excitation [14]. And the Zr⁴⁺ emissions in the visible region have been reported in a few phosphors, such as K₂YZr(PO₄)₃ [1], Ca₄ZrGe₃O₁₂ [8] and Ca₃ZrSi₂O₉ [9]. Furthermore, the phosphors with Zr⁴⁺ ions can accommodate various activators. Usually heavy metal ions such as Zr⁴⁺ in hosts have great influence on nonlinear optics, dielectrics, ferroelectric, valence states of activators [13]. The white-light emission is realized in single-host K₂EuZr(PO₄)₃ by combining the Zr⁴⁺-emission (greenish-blue) with the Eu³⁺ ions emission (red) [1]. Luminescent properties of Ca_{1-x}Mn_xZr(PO₄)₂ phosphors can be tuned by changing Mn²⁺ content, and the green emission had saturated at x = 0.07 [11].

In this study, we report the Zr⁴⁺-emission in the visible luminescence and the tunable white-light emission which is realized in Ca_{8-x}ZrMg(PO₄)₆(SiO₄): xEu³⁺ under UV excitation at room temperature. Additionally, the crystal structure, excitation and emission spectra, decay curves and energy transfer mechanism are investigated and discussed in detail.

2. Experimental

The Ca₈ZrMg(PO₄)₆(SiO₄) host and a series of Eu³⁺ doped Ca₈ZrMg(PO₄)₆(SiO₄) phosphors were prepared by high temperature solid-state reaction method under air atmosphere. The raw materials were CaCO₃

* Corresponding author.

** Corresponding author.

E-mail address: dengdegang@cjlu.edu.cn (D. Deng).

(99.9%, Aladdin), ZrO_2 (99.9%, Aladdin), $MgCO_3$ (99.9%, Aladdin), SiO_2 (99.9%, Aladdin) $NH_4H_2PO_4$ (99.9%, Aladdin) and Eu_2O_3 (99.99%). Stoichiometric amounts of starting materials were thoroughly mixed in an agate mortar by grinding and sintered at 1400 °C in air atmosphere for 2 h. The heating rate was controlled at 6–7 °C/min. Finally, after cooling to room temperature, all of the as-synthesized samples were ground into powders and collected for further measurements.

The X-ray diffraction (XRD) data were collected on an X-ray diffractometer (Bruker Axs D2 PHASER diffractometer) using $Cu K\alpha$ radiation ($\lambda = 1.5405 \text{ \AA}$) in the 2θ ranging from 10° to 80°. The morphology and elemental analysis were characterized by scanning electronic microscopy (SEM). The interplanar crystal spacing was carried out by transmission electron microscope (TEM, HitachiH-9500). The diffuse reflectance spectra were analyzed with a Shimadzu UV-3600 UV-Vis spectrometer. The photoluminescence (PL) and photoluminescence excitation (PLE) spectra were examined by a PL3-211-P spectrometer (HORIBA JOBIN YVON, America) and a 450 W xenon lamp was used as the excitation source. The luminescence decay curves were measured using a nano LED (280 nm) and a spectral LED (460 nm) of pulsed Nd:YAG lasers, respectively.

3. Results and discussion

3.1. Crystal structure

The typical powder XRD patterns of $Ca_{8-x}ZrMg(PO_4)_6(SiO_4): xEu^{3+}$ ($x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6$ and 0.7) and the Inorganic Crystal Structure Database (ICSD) Card file (No. 85090) of $Ca_8CeMg(PO_4)_6(SiO_4)$ as a reference are shown in Fig. 1(a). In fact, there is no standard data of $Ca_8ZrMg(PO_4)_6(SiO_4)$ reported in the database of JCPDF. But from Fig. 1(a), it is clearly found that all the diffraction peaks of $Ca_8ZrMg(PO_4)_6(SiO_4)$ can be well indexed to the standard data of $Ca_8CeMg(PO_4)_6(SiO_4)$, indicating that the structures between them are extremely similar. Therefore, the ICDS Card file of $Ca_8CeMg(PO_4)_6(SiO_4)$ can be taken to characterize the phase purity of the samples. In addition, with the Eu^{3+} ions concentration increasing, the peak positions of the diffraction patterns shift toward larger angle due to the substitution of the smaller Eu^{3+} for the larger Ca^{2+} .

To further investigate the structure of the obtained samples, Rietveld refinement of $Ca_{7.4}ZrMg(PO_4)_6(SiO_4): 0.6Eu^{3+}$ performed with the experimental powder diffraction data are shown in Fig. 1(b). In addition, the corresponding refined parameters are listed in Table 1. The result of the Rietveld refinement reveals that the $Ca_{7.4}ZrMg(PO_4)_6(SiO_4): 0.6Eu^{3+}$ crystallizes in a trigonal unit cell with space-group R3c(161), $a = b = 10.49 \text{ \AA}$, $c = 37.53 \text{ \AA}$, $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$, $V = 3577.70 \text{ \AA}^3$, $Z = 6$. And the refinement finally converges to $R_{wp} = 9.42\%$, $R_p = 6.7\%$ and $GOF = 2.10$. Fig. 1(c) displays the schematic structure of $Ca_8ZrMg(PO_4)_6(SiO_4)$ and the coordinated condition of $Ca1Zr1Mg1(18b)$, $Ca2Zr2(18b)$, $Mg2Zr3(6a)$ and $PSi(6a)$, which are 5, 5, 6, and 4-coordinated, respectively.

Furthermore, the elements (O, Mg, Si, P, Ca, Zr and Eu) in the phosphor are presented in the energy dispersive spectrum of $Ca_{7.4}ZrMg(PO_4)_6(SiO_4): 0.6Eu^{3+}$ (Fig. 2(a)), which indicates the doped Eu^{3+} ions are confirmed to be uniformly distributed in the host. Besides, the SEM and TEM images of $Ca_8ZrMg(PO_4)_6(SiO_4)$ host were displayed in Fig. 2 (b) and (c), respectively. The SEM image clearly shows the slightly aggregated particles with a size about $0.5 \mu\text{m}$. And the crystal lattice stripe and figure of electron diffraction FFT are shown in Fig. 2 (d) and (e), which reveals the interplanar crystal spacing is 0.406 nm , corresponding to the crystal face (0, 2, 4).

3.2. Diffuse reflection spectra

The diffuse reflection spectra of $Ca_8ZrMg(PO_4)_6(SiO_4)$ host and Eu^{3+} -doped $Ca_8ZrMg(PO_4)_6(SiO_4)$ phosphors are illustrated in Fig. 3.

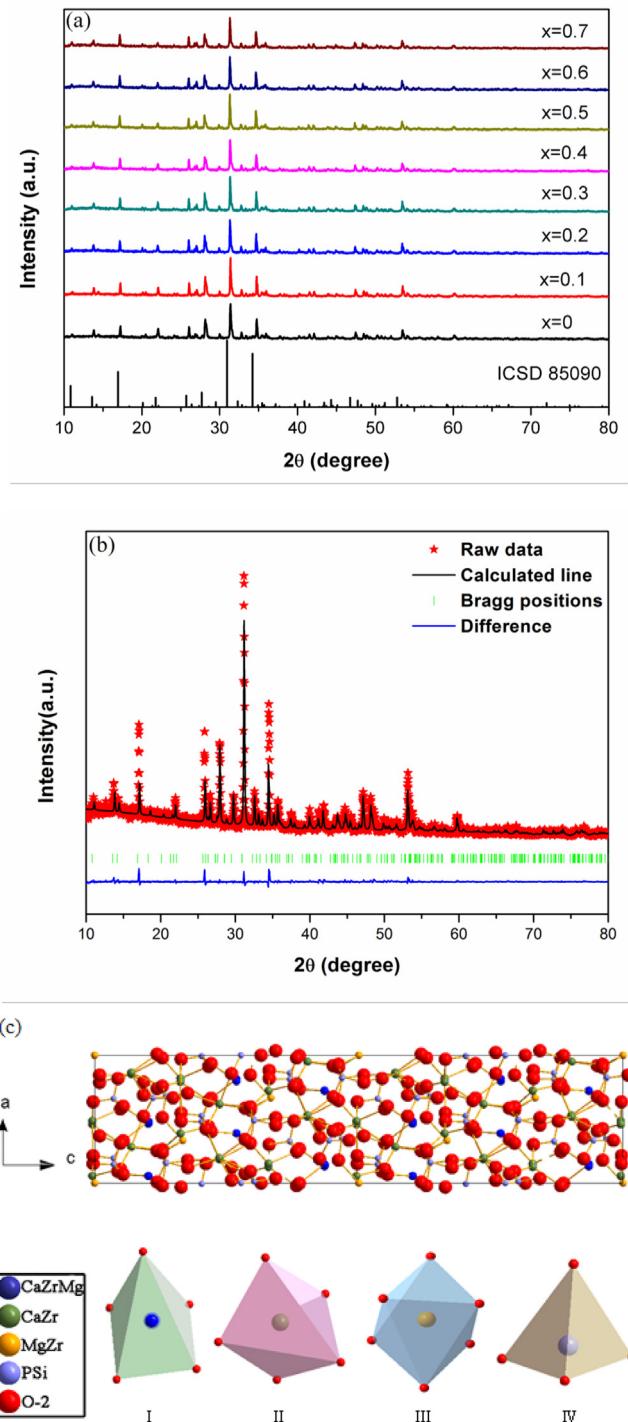


Fig. 1. (a) XRD patterns of $Ca_{8-x}ZrMg(PO_4)_6(SiO_4): xEu^{3+}$ ($x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6$ and 0.7), and the standard data for $Ca_8CeMg(PO_4)_6(SiO_4)$ (ICSD card No.85090) is shown as comparison; (b) Rietveld refinement of the powder XRD pattern of $Ca_{7.4}ZrMg(PO_4)_6(SiO_4): 0.6Eu^{3+}$ sample; (c) Schematic structure of $Ca_8ZrMg(PO_4)_6(SiO_4)$, (I, II, III and IV) were the coordination environment of $CaZrMg$, $CaZr$, $MgZr$ and PSi sites in $Ca_8ZrMg(PO_4)_6(SiO_4)$, respectively.

The $Ca_8ZrMg(PO_4)_6(SiO_4)$ host shows high reflection in the range of 380–800 nm and exhibits obvious energy absorption from 230 to 250 nm and 250–380 nm, corresponding to the absorption of host lattice or oxo-anion group, $-PO_4$, $-SiO_4$ and the CT of $O^{2-} \rightarrow Zr^{4+}$, respectively [15]. With the increase of Eu^{3+} ions doping into Ca_8ZrMg

Download English Version:

<https://daneshyari.com/en/article/7906715>

Download Persian Version:

<https://daneshyari.com/article/7906715>

[Daneshyari.com](https://daneshyari.com)