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a b s t r a c t

This paper describes simplified methods to estimate the elasticeplastic J-integral, J, related to the crack
growth rate in elasticeplastic situations. Estimating this parameter under general conditions entails
costly detailed elasticeplastic FEA modelling of the cracked component concerned, and thus, some
simplified methods that do not involve complex numerical calculations are required, particularly, for use
in situations where plastic strains are produced by secondary stresses. For mechanical primary stresses,
the reference stress method may provide reasonable estimates of J. The direct use of the reference stress
method for secondary stresses, however, has not yet been fully established. The method presented in this
paper is based on the enhanced reference stress method, which leads to more accurate estimates of J
than the original method, and elastic follow-up factors for approximating the inelastic response of the
component from the elastic FEA. The present method has been validated by performing detailed elastic
eplastic FEA of cracked plates subjected to displacement-controlled loading and of a circumferentially
cracked cylinder subjected to thermal loads.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Assessment of crack-like defects in high temperature power
components is frequently required to ensure safe and reliable
operation. To predict crack growth behaviours in elasticeplastic
situations, a J-integral type fracture mechanics parameter, J is
needed to estimate. Estimating J in general situations, however,
needs costly detailed elasticeplastic finite element analysis (FEA)
modelling of the cracked geometry concerned. Performing these
detailed analyses, however, is not practical in many cases; in
particular, in the case of fatigue crack growth under cyclic loading
entailing the crack closure. Therefore, some simplified methods are
required for practical applications.

Representative simplifiedmethods for estimating these inelastic
fracture mechanics parameters were reviewed in Ref. [1], and two
representative methods, the reference stress approach [2] and the
fully plastic solution approach [3], were proposed for crack growth
evaluations under creep-fatigue loading. These methods, however,
were primarily developed for mechanical loading, and it is difficult
to apply these to thermally loaded components. This point is of
significance, because secondary stresses exceed the elastic region in

some cases of high-temperature plant situations, whereas primary
stresses are kept low in accordance with the design codes [4].

A suggestion for estimating relaxation behaviour of a creep
crack growth parameter C* under constant displacement was pre-
sented in Ref. [1], where an elastic follow-up factor may be used for
simply estimating the relaxation behaviour of the reference stress
from the elastic analysis. However, the paper [1] did not refer to any
concrete procedure for determining appropriate elastic follow-up
factors. A proposal of using elastic follow-up factors to estimate
the reference stress due to secondary stresses was later made in
Ref. [5]. The definition for the reference stress given in Ref. [5],
however, was theoretically different from that of the original
reference stress method, and the formulae presented to estimate
the elastic follow-up factors were developed for a non-cracked
cantilever. This method could not, therefore, be deemed univer-
sally valid.

The author presented [6,7] an appropriate method to determine
the elastic follow-up factor based on the strictly original definition
of the reference stress for displacement-controlled loading, and
showed that the estimated factors follow a saturating trend as the
applied displacement is increased. The author then theoretically
proved that the elastic follow-up factor for inelastic response in a
power law-type elasticeplastic body of general shape subjected to
a single displacement-controlled load shows the saturating trend,E-mail address: fujioka@criepi.denken.or.jp.
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and that the factor converges to a unique value depending on the
body shape, loading pattern, and stress exponent [8]. The accuracy
of the original reference stress approach, however, deteriorated in
the numerical validations presented in Refs. [6,7], and the valida-
tions seemed insufficient.

This paper improves upon the author’s previous methods in
Refs. [6,7] by employing the enhanced reference stress method
proposed in Korea [9]. The definition of the reference stresses for
thermal loads given in R5 [10] is employed for thermal loads. The
methods presented in this paper have been validated by perform-
ing detailed elasticeplastic FEA of cracked plates in displacement-
controlled loading and of a cracked cylinder subjected to thermal
loads.

2. Procedures to estimate J

2.1. Description of stressestrain relations

The elasticeplastic constitutive law is expressed by the
following RambergeOsgood law [11]:

ε ¼ s

E
þ ε

p
o

�
s

sY

�m

; (1)

where s is stress and ε is strain, and E (elastic modulus), sY (yield
strength), εpo (plastic strain at s ¼ sY), and m (stress exponent) are
material constants. An elastic-perfectly plastic body may be
regarded as a special case with m / N.

The creep strain rate is expressed by the following Norton law:

_εc ¼ ε
c
o

�
s

sY

�n

; (2)

where _εc is creep strain rate and ε
c
o creep strain rate at s ¼ sY, and n

(stress exponent) is material constant. Hoff’s analogy [12], which
defines a similarity between creep and plasticity, requires that the
stress distribution for fully plastic response is identical to that in
steady state if m ¼ n. This characteristic is essential for under-
standing the later-described definition of elastic follow-up factor
for reference stress and strain.

2.2. Enhanced reference stress method to estimate J

Both the original and the enhanced reference stress methods
approximate J using the following equation:

J ¼ εref
sref=E

Je; (3)

where εref is the reference creep strain rate given by substituting s

with the reference stress, sref, in eqn. (1). The elastic J-integral, Je, is
estimated from the stress intensity factor, KI, for in an elastic body
under the same loading conditions:

Je ¼ K2
I
E0

; (4)

where E0 equals E for plane stress and E/(1 � n2) for plane strain
conditions (n: Poisson’s ratio).

The reference stress in the enhanced method is defined as:

sref ¼ P
gPL

sY; (5)

where PL is the limit load for the component concerned of a rigid
plastic material, and P is the actually applied load. The limit load
correction factor, g, that is non-dimensional, was introduced by
Kim et al. [9] to compensate for the inaccuracy of the original
reference stress method. The original reference stress method may
be regarded as a simple case with g ¼ 1. The value of PL may be
accurately estimated by performing FEA of an elastic-perfectly
plastic body, where m / N in eqn. (1), with increasing applied
load until the component shows collapsing behaviour.

R5 [10] contains simplified expressions to estimate the refer-
ence stress based on the stress categorization concept [13]. A
revised version of this method may be expressed as follows:

sref ¼
(
sb
3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sm þ

�
sb
3

�2
s ),

gCL; (6)

where sb is the equivalent bending stress and sm, the equivalent
membrane stress on the cracked ligament. R5 employs an

Nomenclature

CL net section stress correction factor to compensate for
inaccuracy of the simplified limit load estimates

E, E0 elastic modulus, and modified elastic modulus,
respectively

F dimensionless stress intensity factor
J elasticeplastic J-integral
Je elastic J-integral
JFEA elasticeplastic J-integral estimated by detailed elastic

eplastic FEA
Jref elasticeplastic J-integral estimated by the original

reference stress method
KI stress intensity factor
L plate length
P applied load or reaction force
Pe applied load or reaction force for an elastic body
PL limit load
Rin inner radius of a cylinder
Tmax maximum temperature producing thermal stresses
Z elastic follow-up factor
a crack depth

m stress exponent for plasticity
n stress exponent for creep
w wall thickness of a cylinder
g limit load correction factor
ε total strain
ε
c creep strain
_εc creep strain rate
ε
c
o creep strain rate at s ¼ sY
_εcref reference creep strain rate at s ¼ sref
ε
p plastic strain
ε
p
o plastic strain at s ¼ sY
n Poisson’s ratio
s stress
_s rate of changing stress
sb, sm von Mises type equivalent bending stress and

membrane stress, respectively
sn nominal stress
sref reference stress
seref elastically estimated reference stress
_sref reference stress rate (differential value of sref with

respect to time)
sY yield strength
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