Contents lists available at SciVerse ScienceDirect

International Journal of Pressure Vessels and Piping

journal homepage: www.elsevier.com/locate/ijpvp

Review

Recent progresses in experimental investigation and finite element analysis of ratcheting in pressurized piping

Xiaohui Chen^a, Xu Chen^{a,*}, Dunji Yu^a, Bingjun Gao^b

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
^b School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300000, China

ARTICLE INFO

Article history: Received 11 July 2012 Received in revised form 28 October 2012 Accepted 30 October 2012

Keywords: Ratcheting Cyclic loading Finite element analysis Constitutive model Pressure piping

ABSTRACT

This article presents an overview of recent progresses in experimental investigation and finite element analysis (FEA) of ratcheting behavior of pressurized piping. Ratcheting, namely the cyclic accumulation of plastic deformation, occurs when the structures are subjected to a primary load with a secondary cyclic load if the applied loads are high enough to make the structures yield. Typical piping structures including straight pipes, elbow pipes and piping joints have been investigated experimentally under mechanical or thermal cyclic loading. Finite element analyses with several well-developed constitutive models implemented in the commercial software ANSYS and ABAQUS have been conducted to simulate and predict the ratcheting behavior of pressurized piping. Based on such experimental and FEA research, ratcheting boundaries have been determined with the final aim of aiding the safety design and assessment of engineering piping structures. Some suggestions for structure ratcheting study are proposed.

© 2012 Elsevier Ltd. All rights reserved.

Pressure Vessels and Piping

1. Introduction

In the materials or structures subjected to a cyclic stressing with non-zero mean stress, a cyclic accumulation of inelastic deformation will occur if the applied stress is high enough (ensuring that a yielding occurs), which is called ratcheting or ratcheting effect (some researchers called it cyclic creep too). Structural ratcheting is proposed by Hübel [1]. Structural ratcheting can occur owing to inelastic material behavior under cyclic loading, but more sophisticated than material ratcheting for its inhomogeneous multiaixal stress state due to various load combinations.

Pressurized piping as the most basic structures in chemical industries and nuclear power plants are subjected to variable mechanical and thermal loads which often have a cyclic nature. Let us consider a simple straight pipe that is under a constant pressure and suffers cyclic thermal gradient in the radial direction. In this case, the pipe can be viewed as subjected to a primary load in the axial and circumferential directions due to the constant pressure and a secondary cyclic bending moment caused by the cyclic thermal gradient. If the loads are high enough to make the structure yield, the plastic deformation may be accumulated cycle-by-

0308-0161/\$ – see front matter \odot 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ijpvp.2012.10.008 cycle until the plastic collapse of the structure occurs. This phenomenon is known as ratcheting, i.e. structural ratcheting. Similar to other damage mechanisms such as fatigue and creep, ratcheting has also been considered in many design criteria for engineering components and structures, including ASME Code Section III [2], KTA [3], EN13445 [4], R5 [5] and RCC-MR [6]. These criteria require the structures to remain below the defined ratcheting boundaries where elastic or plastic shakedown occurs [7]. However, current methods to determine the ratcheting boundaries can be too conservative, or sometimes non-conservative. It is therefore of great significance to investigate the ratcheting behavior of such structures and predict it with sound accuracy, which has already been concerned during the last two decades.

So far, several scholars have reviewed research work on ratcheting of materials and structures. Ohno [8] and Kang [9] have reviewed the progresses in ratcheting research for various materials with emphasis on phenomenon observation and constitutive modeling obtained before 1997 and 2008, respectively. In addition, several components of consistent tangent modulus of several constitutive models were discussed by Kang [9]. Abdel-Karim [7] reviewed the literature on shakedown problems of various structures including 4-bar structure, beam, rotating disc, thin infinite plate, infinite plate with a central hole, and tube under internal pressure and variable temperature. According to Abdel-Karim [7], determination of ratcheting boundaries were limited mostly to the

^{*} Corresponding author. Tel.: +86 22 27408399. *E-mail address:* xchen@tju.edu.cn (X. Chen).

simple linear kinematic hardening rule (LKH) of Prager and the nonlinear kinematic hardening of Armstrong–Frederick (AF). The advanced kinematic hardening rules introduced in Ref. [7] had been reported to yield more accurate simulation of ratcheting behavior [8,9]. Being different from these review papers, recent experimental and numerical progresses of the structural ratcheting for various piping components are mainly reviewed in this paper. The process of AF type constitutive models implemented into ANSYS software is detailedly reviewed. The fourth-rank constitutive parameters $\mathbf{H}_{n+1}^{(i)}$ of consistent tangent modulus for AF type constitutive models are derived. The predictions of structural ratcheting with advanced kinematic hardening rules are discussed. The ratcheting boundary determinations for piping components are reviewed.

In the present article, Section 2 summarizes the experimental observation of ratcheting behavior of pressurized straight pipes, elbow pipes, tee pipes and cylinders with lateral nozzles, which are subjected to the constant internal pressure and quasi-static cyclic loading or dynamic loading. In Section 3, the methods of finite element implementation of constitutive models with advanced kinematic hardening rules are briefly reviewed. Finite element analyses (FEA) of ratcheting behavior of pressurized piping are evaluated in Section 4. In Section 5, ratcheting boundaries determined by such FEA are commented. Finally, some suggestions for further studies are proposed as a conclusion of the review.

2. Experimental observation

Ratcheting effect, namely the cyclic accumulation of secondary plastic deformation, occurs when the structures are subjected to a primary load with a secondary cyclic load if the applied loads are high enough to make the structures yield. Considering that the yielding of structures essentially originates from the yielding of materials in some local parts where stress level is high, the accumulation of plastic deformation of the structures can be represented by the local ratcheting strain in the following three forms, which is similar to the case of ratcheting tests for materials,

$$\varepsilon_r = \frac{1}{2} (\varepsilon_{max} + \varepsilon_{min}) \tag{1}$$

or

$$\epsilon_r = \epsilon_{\max}$$
 (2)

or

$$\epsilon_r = \epsilon_{\min}$$
 (3)

where, ε_{max} and ε_{min} are the maximum and minimum plastic engineering strain in a cycle. To evaluate the evolution of ratcheting strain, ratcheting strain rate is widely used, which is defined as the increment of ratcheting strain during each cycle.

So far, ratcheting behaviors of various pressurized piping structures of different materials have been extensively studied in the last several decades as shown in Table 1. These structures include straight pipes and elbow pipes as the typical ones, as well as other structures such as tee and lateral nozzle. Internal pressure was the common constant load exerted on these structures. Cyclic loadings in two control modes, displacement control and load control were mainly applied in these tests. For displacement control, cyclic loading was applied in the controlled waveform of displacement or rotation, while for loading control cyclic loading was applied in the controlled waveform of force. The detailed descriptions of the ratcheting behavior for each type of piping structure under different control modes are presented as follows.

2.1. Ratcheting behavior of straight pipe

The experimental modes to apply cyclic loads to pressurized straight pipes mainly contain three-point bending [10],

Table 1

Review of published literatures on ratcheting investigation of pressurized piping structures.

Scholar	Material	Structural type	Constant loading	Cyclic loading	Control mode
E		C	ID	<u></u>	
Fujiwaka et al. [33,109]	Carbon steel: SA106 GrA	Straight pipe	IP	Static displacement	Displacement control
	Stainless steel: SA3121P304	Elbow pipe/lee	IP	cyclic loading	
				Seismic load	
Gau [14]	Carbon steel	Straight pipe	IP	Displacement-controlled	Displacement control
	304 stainless steel			cyclic bending load	
Moreton et al. [20,25,26]	Mild steel	Straight pipe	IP	Fully reversed cyclic	Load control
	Stainless steel	Elbow pipe		bending moments	
Corona and Kyriakides [30]	Aluminum	Straight pipe	IP	Cyclic bending load	Load control
Kulkarni et al. [12,13]	SA333 Gr.6 carbon steel	Straight pipe	IP	Cyclic bending load	Load control
	SS304 stainless steel.	Elbow pipe		Shake table	
Chen et al. [28,29,49,50,52,123]	Low carbon steel	Straight pipe	IP	Reversed bending load	Load control
		Elbow pipe		Ū.	
Rahman et al. [16,17]	Alloy steel 4130	Straight pipe	IP	Cyclic rotation	Rotation control
	SS304L	Elbow pipe		Opening-closing	Displacement control
				cyclic loading	Force control
Yoshida et al [22]	Carbon steel	Straight nine	IP	Cyclic axial load	Load control
Guionnet et al [23 92]	Austenitic stainless	Tubular specimen	Tensile	Cyclic torsional loading	Load control
	steel (17-12SPH)	rubului speemien	stress	cyclic torsional loading	Loud control
Rider et al [24]	304S11 stainless steel En6	Thin-walled cylinders	ID	Cyclic tensile loading	Load control
Ruci et al. [24]	Low carbon steel	min-walled cylinders	11	cyclic tensile loading	Load control
Johihashi [24]	Staiplass staal	Bining components	ID	Quasi static cyclic loading	Under sinusoidal
ICHIIIdSIII [54]	Jow carbon steel	Fiping components	п	Dunamic quelic loading	deflection control
	LOW CALDOII SLEEL			Chalaine typic to adding	Undersidential former due to estimate
				Shaking table	Under inertial force due to seismic
	0.4.077	a			excitation and sinusoidal excitation
Igari et al. [11]	316FR	Straight pipe	IP	Cyclic moment loading	Displacement control
Acker et al. [45]	Non indicated	Elbow pipe	IP	In-plane bending	Displacement control
Guionnet [23,92]	Austenitic stainless steel	Tube	Tensile	Cyclic torsional loading	Load control
			stress		

Note: Internal pressure is abbreviated to IP.

Download English Version:

https://daneshyari.com/en/article/790737

Download Persian Version:

https://daneshyari.com/article/790737

Daneshyari.com