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a  b  s  t  r  a  c  t

The  methods  of the  theory  of  functions  of  a complex  variable  are  applied  for investigation  of  the  electro-
chemical  machining  process.  The  steady-state  and  non-steady-state  processes  of  workpiece  cutting  using
a wire  electrode-tool  are  considered.  For  modelling  of  the  precision  process  of  electrochemical  machining
the stepwise  function  of  current  efficiency  is used.  The  function  determines  the  movement  velocity  of
the  anode  boundary.  The  machining  surface  at steady-state  process  is divided  into  three  parts:  an  active
dissolution  area,  an  area  where  there  is no  dissolution  (for  low  current  density)  and  a transition  area  in
which  the  current  density  is  equal  to a critical  value.  At  non-steady-state  process  a jump-like  dissolu-
tion  turn  on  and  turn  off  and  dynamical  ascertainment  of workpiece  shape  takes  place  in  the  transition
area.  The  numerical  investigation  of solutions  of  non-steady-state  problems  shows  quick  formation  of
the  solution  coinciding  with the steady-state  solution  obtained  independently  up to  accuracy  0.001.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The investigation of electrochemical shaping is of great inter-
est in connection with the wide application of electrochemical
mechanical machining (ECM) in different branches of industry; see,
for example, McGeough (1974). Today the technologies of precision
machining of different metals and alloys are being actively devel-
oped, including nanotechnologies, with the help of pulse ECM by a
vibrating electrode-tool (ET), as described by Zhitnikov and Zaytsev
(2008).

The modelling of ECM is based on Faraday’s law:

Vecm = k

�
�j, k = �ε/�, (1)

where Vecm is the dissolution velocity, ε is the electrochemical
equivalent, � is the density of the dissolved material; � is the con-
ductivity of the electrolyte; j is the current density on the anode
boundary; � = � (j) is  the current efficiency (the current fraction
taking part in the material dissolution reaction).

The precision technologies of pulse cyclic ECM are being applied
at present to achieve increased accuracy. In this case, an oscillating
constituent (usually sinusoidal) is imposed on the ET translation
movement, and the current is given as rectangular pulses at the
time of the maximum approach of the ET and the detail. The com-
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pleted electrolyte is substituted at the moment when the ET is
removed from the detail. The shift of the workpiece surface in
one period is assumed to be a small quantity in view of the small
velocities of ECM (several mm/min) and the short pulses (about
1–3 ms). Then it is possible to use a discrete-continuous model of
the process for which the dependence (considered above) of the
dissolution velocity on the current density is valid, and the propor-
tionality coefficient k decreases by Q times, where Q = T/tp, T is the
oscillation period, tp is the pulse duration.

In view of the shortness of the pulses, it is possible to neglect the
electrolyte heat and gas filling. So, the ideal process in a standard
electrolyte is considered here.

For a given dependence of the current efficiency � (j) on the
current density j and constant electrode potentials, the process
localization is determined by the coefficient introduced by Idrisov
et al. (2004):

kloc = j

Vecm
|dVecm
dj

| =
(

1 + j

�

d�

dj

)
. (2)

So, the greater the value of d�/d� the greater the value of kloc .
In this paper, the dependence of the current efficiency on the

current density is modelled by the stepwise function suggested by
Zhitnikov et al. (2011):

� (j) =

⎧⎪⎨
⎪⎩

�0, j > j1,

∀� ∈ [0, �0] , j = j1,

0, j < j1.

(3)
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Fig. 1. Profile patterns obtained by cutting of grooves.

Note that this model does not contradict the experimental
results of Mannapov et al. (2011), because the real dependence
for passivate electrolytes for rather short pulses contains a seg-
ment where there is sharp changing of the current efficiency if
the current density approaches some critical value. The qualitative
experimental justification of this dependence presents in Zhitnikov
et al. (2011).

It is important that the dependence (3) has a vertical segment
(where the derivative tends to infinity), which provides the most
localization according to Eq. (2).

Karimov et al. (1990) and Zhitnikov and Zaytsev (2008) have
solved the problems of the steady-state shaping by a point ET and a
round ET for � = const. For non-steady-state problems with a point
and plane ET, the dependence � = const was used by Zhitnikov
et al. (2004). The non-steady-state shaping by a plane ET with
stepwise dependence of the current efficiency was investigated by
Zhitnikov et al. (2011). The non-steady-state problem of the copy-
ing of a round ET with hyperbolic dependence of current efficiency
was solved by Minazetdinov (2009). The cutting by a round ET for
different changes of ET trajectory for � = const was  investigated
by Volgin et al. (2014) using the boundary element method. The
boundary element method was also applied by Purcar et al. (2004)
for ECM problems solving for � = const. The authors of these two
papers notice that solving of the problems by numerical methods
one can obtain uncontrolled grid nodes rapprochement in some
regions. This process leads to the deceleration or to the computa-
tional error increase (Pandey, 1980). The complex approaches of
location control of grid nodes are required to avoid such problems.

We  can fix nodes on the border of the region on some parametric
plane � (for example a band). In this case the conformal mapping
is used and the partial time derivative is calculated ∂Z/∂t (�, t) ,
(Z = X + iY, X, Y are the Cartesian coordinates, t is the time) This mod-
ification simplifies non-steady-state problems solution (Zhitnikov
et al. (2004)). Particularly, the form of integrated functions allows
application of uniform spatial grid on all time steps in spite of the
essential variation of inter-electrode space.

2. Problem statement

Let us consider a non-steady-state problem of electrochemical
machining with the help of a wire ET.

Photos of experimental patterns with grooves obtained by cut-
ting of the produced details are shown in Fig. 1. The width of the
slots in these experiments varied in the range of 50–200 �m.

The wire ET, represented by a point at the cut, moves into the
depth of the initially plane workpiece with velocity Vet = −dYc/dt
(Yc is the ordinate of the point C, t is the time) at a right angle to
the surface. The initial gap between electrodes (the distance CD) is
equal to S0. The current in a unit width cell is equal to I. The inter-
electrode space (IES) shape is shown in Fig. 2ɑ. Here HDG is the
dissolution area, and AH and GB are insoluble (� = 0) boundaries.

The methods of the theory of functions of a complex variable can
be used under the assumption of medium ideality. The considered

Fig. 2. IES images shapes: (ɑ) physical plane; (b) complex potential plane.

problem is a variety of the Hele-Shaw problem with a free boundary
(Howison (1992)).

Let us consider the complex potential W =  ̊ + i�, where 	 is
the electrical field potential, 
 is the stream function. The magni-
tude of the electrical field strength is determined by the derivative

E =
(

dW/dZ
)
, and the current density is j = �|dW/dZ| according

to Ohm’s law, Z = X + iY. The problem is reduced to determining the
conformal mapping of the IES area of the physical plane onto the
area in the plane W at every moment.

The potential 	 is assumed to be constant (equal to zero) on
the boundary corresponding to the machining surface; the stream
function 
 has constant values on any streamline. Therefore, a
semi-band with the width I/� (Fig. 2b) is a domain corresponding
to the IES in the complex potential plane.

Let us come to the dimensionless magnitudes z, � and w:

z = Z

l
, x = X

l
, y = Y

l
, � = Vet

l
t = k�0I

l2�
t, w = �

I
W, ϕ = �

I
	 � = �

I

, (4)

where l = k�0I/ (�Vet) is a typical dimension. For � = const = �0
this magnitude is equal to the asymptotical width of the groove
appearing when the ET moves into the workpiece.

We  denote the dimensionless ordinate of the point C by yC , the
dimensionless velocity of ET by vet . Then

vet = −dyC
d�

= −1
l

l

Vet

dYC
dt

= 1.

Then the equality (1) takes the form

dz
d�

= l2�

lk�0I

dZ

dt
= l�

k�0I
k�
(

dW
dZ

)
= �

�0

(
dw
dz

)
, (5)

where � = �
(

�Vet/k�0|dw/dz|
)

according to Eq. (3).
The equality (5) allows us to compute the evolution of the free

boundary of the machining surface in time and it is used in solving
of the non-steady-state problem.

Let us consider the steady-state solution forming on the most
part of workpiece surface in machining zone with time increase. In
this case the boundary shift along the normal caused by electro-
chemical dissolution is equal to the projection of the ET’s moving
velocity on the normal. Note that the strength vector is directed
along the normal to the electrodes’ boundaries (from cathode to
anode) for equipotential electrodes. In this connection, the steady
state condition can be written in the form

|dZ
dt

| = k�|dW
dZ

| = −Vet sin ,

where  is the inclination angle of the strength vector to the X-axis.
This formula for dimensionless variables has the form

�

�0
|dw

dz
| = − sin . (6)

Note, that for application of the function (3) the Eqs. (5), (6)
remain valid for any value of �. Particularly, the equality dz/d� = 0
follows from (5) for � = 0 and the equality sin  = 0 follows from Eq.
(6).
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