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a b s t r a c t

High-resolution absorption and stimulated-emission cross-section spectra are presented for monoclinic
Nd:KGd(WO4)2 (Nd:KGW) laser crystals in the temperature range 77e450 K. At room-temperature, the
maximum stimulated emission cross-section is sSE ¼ 21.4 � 10�20 cm2 at 1067.3 nm, for light polarization
E || Nm. The lifetime of the 4F3/2 state of Nd3þ in KGW is practically temperature independent at
115 ± 5 ms. Measurement of the energy transfer upconversion parameter for a 3 at.% Nd:KGW crystal
proved that this was significantly smaller than for alternative hosts, ~2.5 � 10�17 cm3/s. When cut along
the Ng optical indicatrix axis, the Nd:KGW crystal was configured as a microchip laser, generating ~4 Wof
continuous-wave output at 1067 nmwith a slope efficiency of 61% under diode-pumping. Using a highly-
doped (10 at.%) Nd:KGW crystal, the slope efficiency reached 71% and 74% when pumped with a laser
diode and a Ti:Sapphire laser, respectively. The concept of an ultrathin (250 mm) Nd:KGWmicrochip laser
sandwiched between two synthetic diamond heat-spreaders is demonstrated.

Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

1. Introduction

Monoclinic double tungstates, KRE(WO4)2, where RE stands for
an optically passive rare-earth element like Gd, Y or Lu, are
exceptionally suitable for doping with active rare-earth ions like
Nd3þ, Yb3þ, Tm3þ or Ho3þ [1]. Such host-dopant combinations offer
intense and broad absorption and emission bands with a strong
polarization-anisotropy [2,3], high doping concentrations without
significant luminescence quenching [4], and they are Raman-active
[5]. The thermal conductivity of double tungstates (~3 W/m.K) is
three times higher than that of laser glasses [6]. As a result,
medium-power but highly efficient continuous-wave (CW) [7,8], Q-
switched [9,10] and mode-locked [11,12] double tungstate lasers
utilizing various geometries of the active element (e.g., bulk, slab,
thin-disk) have been reported to date.

The unique combination of attractive spectroscopic properties
and high RE dopingmake the double tungstates very interesting for
microchip lasers [13]. Such lasers consist of a gain medium and
optionally a saturable absorber for Q-switching placed in a plano-
plano laser cavity without air gaps. The compact, robust and low-
loss design provides high laser efficiency [13]. However, the pos-
sibility to exploit the advantages of double tungstates in the
microchip geometry was hampered for many years by the negative
thermal lens of these materials [14] resulting mainly from negative
thermo-optic coefficients [15]. Recently, a crystal orientation was
determined that can provide access both to the high-gain laser
polarizations and a positive thermal lens, independent of the active
ion [8,16,17]. This orientation is realized by cutting along one of the
principal axes of the optical indicatrix of these biaxial crystals (Ng-
axis). As a result, highly-efficient Yb, Tm and Ho double tungstate
microchip lasers were reported recently [18e20].

The implementation of a Nd-doped double tungstate microchip
as active medium is of great interest as it can fully exploit the* Corresponding author.
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advantage of the 4-level laser medium, i.e. very low laser threshold
in a low-loss microchip cavity resulting in high optical-to-optical
laser efficiency. Among the double tungstates, KGd(WO4)2
(commonly shortened to KGW) is the best host for Nd3þ doping due
to the similarity of the ionic radii of eight-fold oxygen-coordinated
Gd3þ (1.053 Å) and Nd3þ (1.109 Å). Thus, doping up to 10 at.% Nd is
possible, whilst it is limited to ~2 at.% for KYW and KLuW host
crystals.

To date, studies of Nd:KGW have focused mainly on the devel-
opment of efficient low-threshold lasers emitting at ~1 mm and
1.35 mm [21,22]. Nd:KGW is an interesting laser crystal for several
other reasons. First, the main laser transition of Nd3þ ions in KGW
(4F3/2 / 4I11/2) generates a wavelength (~1067 nm) that is slightly
longer than that of Nd:YAG and Nd:YVO4 (~1064 nm). If frequency
doubled, this corresponds to a green emission at 533.6 nm, which is
exceptionally suitable for pumping of visible (deep-red, ~702 nm)
Eu3þ lasers [23]. In addition, it can be used for in-band pumping of
green upconversion Ho3þ lasers (to the 5F4þ5S2 state). Secondly,
KGW is a well-known Raman-active material with an intense
vibrational mode at 901 cm�1 that enabled the operation of a CW
Nd:KGW Raman laser [5]. The combination of the 4F3/2 / 4I11/2
emission with self-Raman conversion and second-harmonic gen-
eration can produce yellow light sources (at ~590 nm). In addition,
Raman conversion of the 4F3/2 / 4I13/2 emission (~1351 nm) can
lead to the generation in the eye-safe spectral region at ~1540 nm.
Finally, in comparisonwith Nd:YAG and Nd:YVO4 crystals, Nd:KGW
has much broader absorption bands at 808 nm [24]. The latter,
together with the higher achievable Nd3þ concentrations
mentioned above, makes Nd:KGW lasers almost insensitive to
temperature drift of the pump diode wavelength e a feature, suc-
cessfully exploited in a ChemCam laser system, developed for space
applications [25].

In the present work, we aim to exploit the spectroscopic and
thermo-optic features of Nd:KGW for microchip laser operation.
Detailed reconsideration of spectroscopic properties of Nd:KGW is
motivated by a discrepancy in the results reported to date [26,27],
as well as the lack of information with regard to temperature-
dependence of the absorption and stimulated-emission (SE)
cross-sections for low and elevated temperatures. The former are of
practical importance for cryogenic lasers, a concept that can miti-
gate the main drawback of Nd:KGW (i.e., strong thermo-optic ab-
errations). The latter are useful for understanding the effects of
strongly localized heating produced by the dissipation of pump
power in Nd:KGW lasers. Moreover, the dependence of SE cross-
sections on temperature has been utilized for significant energy
scaling in Q-switched Nd:YVO4 microchip formats [28], simply by
increasing the temperature of the laser gain material. With a lower
SE cross-section and similar lifetime, Nd:KGW has the potential for
even higher pulse energies than Nd:YVO4 using compact Q-
switched microchip laser cavities at elevated temperatures of the
gain material. Therefore, detailed information on the temperature-
dependence of the SE cross-sections in Nd:KGW is essential for the
development of compact Q-switched lasers based on this crystal.
Finally, we present the first CW laser action of ultrathin (250 mm)
Nd:KGW crystal sandwiched between two diamond heat-spreaders
as an initial step towards realization of such microchip lasers.

2. Optical spectroscopy

For the spectroscopic studies, we used 1 mm-thick 3 and 4 at.%
Nd:KGW crystals (NNd ¼ 1.9 and 2.5 � 1020 at./cm3, respectively).
The 3 at.% crystal was cut along the Ng-axis of the optical indicatrix
(the orientation that is of interest for microchip laser operation)
thus providing access to the two other principal light polarization
states, E || Nm and Np. The second crystal was Nm-cut, providing

access to E || Ng and Np emission.
For the absorption measurements, undertaken with the 3 at.%

sample, a broadband amplified spontaneous emission (ASE) source,
a polarizer, and an optical spectrum analyzer (OSA) with 0.1 nm
resolution were used. The experimental setup is shown in Fig. 1.
Two different fiber-coupled (fiber diameter: 200 mm, N.A. ¼ 0.22)
light sources were employed. One of the sources was a diode laser
with a nominal lasing wavelength of 805 nm (LIMO60-F200-
DL808); however, operation below the laser threshold delivered
~100 mW of ASE covering the wavelength range 780e840 nm. The
second source, an 870 nm high-power light-emitting diode (LED)
(JET-870-05 Roithner Lasertechnik) produced ~10 mW of output
power at the exit facet with an emission spectrum covering
850e910 nm. Both probe light sources were coupled into a mea-
surement fiber. The exit facet of the latter was fixed in position and
imaged in the sample with three times magnification. The light
transmitted through the sample was subsequently re-imaged onto
the endface of a fiber patch cable and sent to an OSA (ANDO
AQ6317B). A broadband cube polarizer was used to isolate the
respective principal optical polarization of interest, || Nm and || Np.
Fig. 2 illustrates emission spectra for both ASE sources measured
before and after the Nd:KGW crystal.

Absorption spectra for the Nd:KGW crystal corresponding to the
4I9/2 / 4F5/2 and 4I9/2 / 4F3/2 transitions, measured at room tem-
perature (300 K), are shown in Fig. 3(a) for the studied polarization
states, E ||Nm andNp. For both transitions, a significant anisotropy is
detected with the larger absorption cross-sections (sabs) corre-
sponding to E || Nm. For the 4I9/2 / 4F5/2 transition and light po-
larization E || Nm, the absorption band contains an intense peak
with a maximum sabs(m) ¼ 29 � 10�20 cm2 at 810.5 nm and a full
width at half maximum (FWHM) of 1.7 nm. For E || Np, this band
contains two peaks of similar intensity centered at 806.2 and
810.5 nm with their maxima sabs(p) ~6 � 10�20 cm2. For the 4I9/
2 / 4F3/2 transition and both polarizations, the absorption band
contains two intense peaks centered at 875.7 nm (FWHM¼ 2.3 nm)
and 883.8 nm (FWHM ¼ 1.6 nm). The second peak dominates and
the corresponding values for the maximum absorption cross-
sections are sabs(m) ¼ 8.8 and sabs(p) ¼ 4.8 � 10�20 cm2.

As the strongest absorption in Nd:KGW corresponds to the po-
larization state E || Nm, we have performed temperature-dependent
measurements for this polarization alone. However, for the 4I9/
2 / 4F5/2 transition at low temperatures, we were limited by the
very strong absorbance of the 1 mm-thick crystal, so the mea-
surements for this transition were only conducted for the
300e450 K range, Fig. 3(b). At the maximum elevated temperature
tested (450 K), the sabs(m) peak decreased by a factor of 1.8, as
compared with its room-temperature value, while the FWHM
bandwidth slightly increased to 2.7 nm.

For the 4I9/2 / 4F3/2 transition, limitation of strong absorption
can be overcome by fitting the spectral shape of the local peaks
with a Lorentzian function, as can be expected for Raman

Fig. 1. Set-up for temperature-dependent absorption measurements: LD e laser diode,
ASE e amplified spontaneous emission, OSA e optical spectrum analyzer.
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