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a b s t r a c t

Analytical solutions for the elastic–plastic stress distribution in rotating annular disks with uniform and
variable thicknesses and densities are obtained under plane stress assumption. The solution employs
a technique called the homotopy perturbation method. A numerical solution of the governing differential
equation is also presented based on the Runge–Kutta’s method for both elastic and plastic regimes. The
analysis is based on Tresca’s yield criterion, its associated flow rule and linear strain hardening. The
results of the two methods are compared and generally show good agreement. It is shown that,
depending on the boundary conditions used, the plastic core may contain one, two or three different
plastic regions governed by different mathematical forms of the yield criterion. Four different stages of
elastic–plastic deformation occur. The expansion of these plastic regions with increasing angular velocity
is obtained together with the distributions of stress and displacement.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Estimation of stress distribution in rotating disks at high speeds
is an important subject due to a large number of engineering
applications. For this reason, the theoretical investigation of
stresses and displacement in such structures has been receiving
considerable attention and the topic is discussed in many standard
and advanced textbooks [1–4].

Gamer [5] first obtained a consistent analytical solution for the
elastic–plastic response of a rotating uniform thickness solid disk
using Tresca’s yield condition and its associated flow rule. A state of
plane stress and linear strain hardening were assumed. It was
shown that the plastic core first develops at the axis of the disk and
consists of two adjacent plastic regions governed by different
mathematical forms of the yield criterion. Güven extended these
works to annular and solid disks of variable thickness and variable
density [6,7] and to fully plastic variable thickness solid disks with
constant thickness in the central portion [8]. The complete
analytical solutions for convex exponential and power function
thickness profiles were obtained by Eraslan and Orcan [9]. In a later
work, Eraslan and Orcan studied the elastic–plastic deformation of
variable thickness solid disks having concave profiles [10].The

elastic–plastic response of the concave profiles were shown to be
quite different from that of the uniform thickness disk. It was
shown that the deformation behavior of a concave exponential
solid disk is different from that of the constant thickness disk in
such a way that three different stages of elastic–plastic deformation
take place. The numerical von Mises solution of an exponential
solid disk has been compared to the analytical Tresca’s solution at
the fully plastic state [11]. Various thickness profiles including
hyperbolic, exponential and power function forms for annular disks
were studied numerically by Eraslan [12]. Elastic–plastic defor-
mations of rotating variable thickness annular disks with free,
pressurized and radially constrained boundary conditions were
also obtained by Eraslan [13]. Variational iteration solution of
elastic non-uniform thickness and density rotating disks by Hojjati
and Jafari [14], theoretical and numerical analyses of rotating discs
of non-uniform thickness and density of elastic linear hardening
material by the variable material property method by Hojjati and
Hassani [15] are some of newly published studies in this field.
Adomian’s decomposition and homotopy perturbation methods
have also been used by Hojjati and Jafari [16] for the solution of
elastic non-uniform thickness and density rotating disks.

The aim of this work is to obtain semi-analytical elastic–plastic
solutions of rotating annular disks with variable thicknesses and
densities subjected to different boundary conditions of engineering
interest using the homotopy perturbation method (HPM). Pertur-
bation method is one of the well-known methods based on the
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existence of small/large parameters, the so-called perturbation
quantity. He’s homotopy perturbation method which does not
require a ‘‘small parameter’’ takes full advantage of the traditional
perturbation methods and the homotopy techniques and yields
a very rapid convergence of the solution. The homotopy pertur-
bation method is discussed in detail by He [17–20].

2. Theoretical background

2.1. Governing equation of rotating disk

Assuming that the stresses do not vary over the thickness of the
disk, the analysis used for thin disks of constant thickness can be
extended to disks of variable thickness. Let h be the thickness of the
disk, varying with radius r, i.e. h ¼ h(r) (Fig. 1). Simplifying the radial
equilibrium condition for an infinitesimal element of the disk gives
[2,15]:

d
dr
ðhrsrÞ � hsq ¼ �hru2r2 (1)

where r ¼ rðrÞ is the distribution function of density, and u is the
angular velocity of the disk.

In the plane stress and small deflection condition assumed for
this analysis, the strain–displacement relation is [2]:

3r ¼
du
dr
; 3q ¼

u
r

(2)

In this work, an elastic linear hardening [2] model is used (Fig. 2) for
modeling the stress–strain relationship of the disc material:

( 3 ¼ s
E; s � s+

3 ¼ s+

E
þ 1

Et
ðs� s+Þ; s > s+

(3)

where s+ and Et are the yield strength of the material and tangent
modulus, respectively. By using this model,

( s � s+ 3e ¼ s
E; 3p ¼ 3EQ ¼ 0

s > s+ 3e ¼ s
E; 3p ¼ 3EQ ¼

�
1
Et
� 1

E

�
ðs� s0Þ

(4)

where 3EQ , 3p and 3e are the equivalent plastic, plastic and elastic
strains respectively.

By using Eqs. (3) and (4), one can easily get the following rela-
tionship for the equivalent stress sEQ as occurs in the plastic region:

sEQ ¼ s+
�
1þ h3EQ

�
(5)

where h ¼ EEt=½s+ðE � EtÞ� represents the hardening parameter.
In the analysis of elastic–plastic response of annular disk, Tres-

ca’s yield criterion and its associated flow rule as defined in Section

4.1 are used with the assumption of linear hardening material
behavior. The disk is symmetric with respect to the mid plane and
its profile and density are assumed to vary as functions of the radius
(r) [6,7]:

hðrÞ ¼ h+

�r
b

��n
(6)

rðrÞ ¼ r+

�r
b

�m
(7)

where n and m are geometric parameters (0 � n � 1, m � 0), b is the
outer radius of the disk and ho is the thickness of the disk at r ¼ b.
It is obvious that a disk of uniform thickness and density is simply
obtained by setting m ¼ n ¼ 0. Rotating disks with variable density
can be considered as functionally graded materials (FGM) and the
literature devoted to this field is extensive [6,7,21–24]. Although,
other material properties such as the modulus of elasticity can also
be assumed to vary with disk radius, in this research it was arbi-
trarily decided to assume that Young’s modulus is constant as
reported in previous studies [6,7,16]. The same procedure is also
applicable if the variation of the other material properties are to be
taken into account.

2.2. Homotopy perturbation method (HPM) [16]

To explain the homotopy method [17–20], let us consider the
following function:

AðuÞ � f ðrÞ ¼ 0; r˛Q (8)

with the boundary conditions of:

Bðu; vu=vnÞ ¼ 0; r˛G (9)

Fig. 1. Disk profile and acting forces on an element.

Nomenclature

r Radius of disk (m)
a Inner radius of disk (m)
b Outer radius of disk (m)
ci Integration constant
E Modulus of elasticity (GPa)
Et Tangent modulus (GPa)
h Hardening parameter
3EQ Equivalent plastic strain
h+ Thickness of the disk at r ¼ b (m)
hðrÞ Disk thickness

n;m Parameters in the thickness and density functions
u Radial displacement
m Poisson’s ratio
r Mass density (kg/m3)
sr Radial stress (MPa)
sq Circumferential stress (MPa)
s+ Yield stress of the material (MPa)
u Constant angular velocity of rotation (rad/s)
U Dimensionless angular velocity
G The boundary of the domain Q

Q Domain
3 Small parameter
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