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On the failure resistance of quasi-periodic lattices
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Quasi-periodicmaterials have beenwidely studied for their behavior regarding atomic dynamics, photonic, mag-
netic and electronic properties. They have unique properties inherited from their specificmaterial symmetry. The
recent development of additive manufacturing gives the opportunity to produce quasi-periodic structures to
benefit from their unique capability. In this paper, quasi-periodic beam lattices are produced and failure experi-
ments are performed. Then, a numerical model is proposed and validated. It is obtained that quasi-periodic Pen-
rose lattices can outperform their periodic counterpart. These results open new ways to design architected
materials with enhanced failure energy dissipation capabilities.
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The recent development of additive manufacturing gives the oppor-
tunity to produce metamaterials like closed cellular materials effi-
ciently, i.e. with a perfect control of the cell shape and distribution. As
a particular case, latticematerials are interesting inmanyfields of appli-
cation because of their lowdensity. Due to this lowdensity, the question
regarding their mechanical properties and their integrity is important.
While, their effective elastic properties and energy absorption capabili-
ties under compression have beenwidely studied [1, 2], their failure be-
havior remains almost unexplored except a very few papers as [3]
concerning crack initiation.

The analysis of lattice materials is usually limited to periodic pat-
terns. But, using additive manufacturing there is no limitation and
quasi-periodic arrangements can be obtained. Considering that quasi-
periodic structures have demonstrated unique properties regarding
various physical phenomena (e.g. to store energy in local non-
propagative vibration modes or to resist to the propagation of defects),
it should be interesting to produce using additive manufacturing quasi-
periodic lattices that inherit outstanding properties from their specific
arrangement. Quasi-periodic materials have been widely studied for
their behavior regarding atomic dynamic, photonic, magnetic and elec-
tronic properties [4–6]. They have unique properties inherited from
their specific material symmetry. Indeed, quasi-crystals usually have
high order large scale symmetry from which they inherit macroscopic
isotropy formanyphysical properties. But contrary to periodicmaterials
that hold the same order of symmetry whatever the observation scale,
quasi-crystals appear almost amorphous at smaller scales.

In this paper, quasi-periodic beam lattices are produced at the mac-
roscopic scale (typical beam length of 1 mm) from a photo-sensitive
ABS-type polymer powder and failure experiments are performed.
Then, a numerical model using elastic Euler-Bernoulli beam elements
and an energy based fracture criterion is proposed and validated against
the experiments. This allows investigating the failure resistance of some
specific arrangements and the impact of characteristic geometrical fea-
tures on the related energy dissipation. It is obtained that Penrose-type
quasi-periodic lattices outperform their periodic counterpart. These re-
sults open newways to design architectedmaterialswith enhanced fail-
ure energy dissipation capabilities.

The behavior of 2D lattice materials (honeycomb) is investigated.
Three types of lattice are selected:

1. quasi-periodic Kite & Dart Penrose tilling [7]

2. periodic approximate of the octogonal lattice [8]
3. periodic hexagonal lattice

They are considered as lattices of elastic beams of rectangular sec-
tion. Once the absolute size of a specimen is fixed, the remaining param-
eters to design such materials are: the unit cell size or beam length, the
beamwidth and the constitutive material. If the constitutive material is
linear and brittle then its properties are supposed to affect the overall
behavior (global displacement and force) of the lattice only to a scaling
parameter. However, varying the ratio between theunit cell size and the
specimen size would allow to evidence size effects [9]. Also, the beam
width e is an important parameter as it strongly affects the ratio be-
tween the flexural stiffness (varying as e3) and tension stiffness (vary-
ing as e) of the beams. The stiffness ratio is thus expected to scale
with e2 which allows spanning large investigation domains in terms of
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competition between bending and tension for limited variation of e.
This is useful because the variation of e is limited in practice due to
the resolution of the manufacturing process (lower bound) and as-
sumptions for beam kinematics (upper bound). The relative density of
a lattice scales as e and thus as 1/(l/e), l/e being the slenderness of the
beams.While the relative density is ameaningful parameter to compare
different classes of materials, in the case of beam lattices, slenderness is
helping to analyze the trends as it is the parameter governing the com-
petition between flexuralmodes and tensionmodes. However, the rela-
tion between these two parameters is straightforward and the results
can also be interpreted from the insight of the relative density. Note
that for a given value of beam slenderness, the relative density for the
octogonal lattice and the Kite & Dart Penrose tilling are similar while
the relative density for the hexagonal lattice is 0.6 times lower.

Experiments have been performed on samples obtained by additive
manufacturing. They are made from photo-sensitive ABS-type polymer
powder. The bulk material obtained from this process is isotropic. Its
elastic behavior is defined by a Young's modulus of 1.4 GPa and a
Poisson's ratio of 0.4. The sample design is the same as in [1] with a cen-
tered pre-crack oriented at 30° with respect to the direction perpendic-
ular to the loading axis (see Supplementary Material). The lattice
structure is embedded by zones completely filled with the material.
These zones are caught by the grips of the loading device to apply the
remote displacement. The speed of the grips is 0.1mm/min. This design
allows for loading a central square part of 90 mm size with a classical
tensile device under macroscopic uniaxial tension. Due to the crack
angle of 60°with respect to the loading axis, the crack tips are submitted
to a mixed mode loading.

The samples are loaded until failure. Due to the high amount of elas-
tic energy stored in the specimen, failure is unstable for the tested beam
width of 0.2 mm. As an illustration of the results, an image of a Kite &
Dart Penrose lattice after failure is presented in Fig. 1 (see Supplemen-
tary Material for other configurations). One clearly observes interac-
tions between the crack and the structure of the material. It seems
that specific features of the lattice (such as the one marked in blue in
Fig. 1) induce a deviation of the crack. They could be named extra-
tough features as this effect is obtained systematically. The deviation
of the crack path induced by these specific features of the lattice
makes the actual crack length longer than if the cracks were straight,
resulting in a higher effective (from amacroscopic point of view) failure
energy. Conversely, periodic structures have weak planes (lines) induc-
ing directionality effects as illustrated in [9]. Even if zigzag patterns can

be obtained in some cases resulting in an increase of the effective failure
energy aswell, in the tests we performed on periodic lattices, cracks fol-
low straight paths meaning that no dissipation mechanisms induced by
the architecture are activated.

For modeling these experiments on thematerials described above, a
simple numerical model is developed in an in-house MATLAB code. It
consists of 2D beam elements under the assumption of Euler and
Bernoulli. The constitutive material is assumed to be linear elastic and
inertia effects are ignored. The joints between the elements are sup-
posed to be perfect: infinitely rigid with no dissipation. The criterion
for beam failure is based on the element-average strain energy density.
It allows for weighting the contribution of tension force and bending
moment with their actual energy contribution. The averaged strain en-
ergy density is denoted for element i as

Φi ¼
1

2mes Ωið Þ
Z

σ : ϵdΩ ð1Þ

in the following. In this Equation, Ωi denotes the volume of element i
(mes(Ωi) being its size): holds for double contraction of second order
tensors and ε, respectively σ, is the small strain symmetric tensor, re-
spectively Cauchy stress tensor. The maximum value that can be
sustained by a beam before it fails is a material parameter, namely Φc.
Quasi-static simulations are performed and failure is accounted for
using the following steps:

1. Elastic simulation of the lattice under a unit prescribed external load
(load factor λ = 1)

2. detection of the beam imax having the highest averaged strain en-
ergy density Φmax

3. the load factor is adjusted so that Φmax equals Φc: λ2 = Φc / Φmax
4. the amplitudes of the displacement and external loads computed in

step 1 are scaled by λ
5. the results are saved and beam imax is removed from the lattice
6. go to step 1 while the lattice can handle external loading (Φmax N 0)

It is assumed that the behavior of the beams is purely brittle and the
global response is adjusted through the load factor in terms of applied
displacement and force. In the case when the mechanical response of
the specimen is not stable under monotonic loading, snap back (de-
creasing displacement and force) can be obtained. This is the main dif-
ference between the numerical simulations and the experiments in
which this instability results in a dynamical response of the specimen
(because the displacement can only increases, the specimen “jumps”,
with no control on the applied loading, from a stable configuration to
the one having the closest but higher prescribed displacement). How-
ever, as there is no initial kinetic energy in the system, it is expected
that dynamical effects have a very limited influence on the results. The
algorithm proposed above to drive the simulation is thus a reliable ap-
proximation of the actual loading conditions applied to the specimen.
A Griffith like criterion was also tested but its prediction in terms of sta-
bility was not correct compared to the experiments. One can argue that
such a criterion is based on the existence of a stress singularity at the
crack tip. In the analyzed materials herein, this is not the case as the
ratio between the crack length and the beam length is low (around
10). Further, in [10], we have demonstrated that a gradient-elasticity
model must be used to capture the macroscopic deformation of the lat-
tice and this kind of continuummodel is known to cancel out the singu-
larity at the crack tip.

The model involves two material parameters: the Young's modulus
E and the critical averaged strain energy densityΦc. The global response
of the specimen scales as E and thus, the only meaningful parameter is
the ratio Φc/E. However, due to linear nature of the considered model,
the crack path is supposed not to depend on this parameter. To simulate
the experiments, the two components of the displacement are fixed for
all the nodes within a narrow band (its width being the average beam

Fig. 1. Comparison of the failure path between experiments and numerical simulations for
the Penrose tilling for e = 0.2 mm (l/e ≈ 6.7). The loading direction is vertical and the
crack orientation is 30° with respect to the direction perpendicular to the load. The
predicted failure path has been overlaid in red onto the experimental picture. The blue
circle outlines one of the patterns in the lattice that were to induce a deviation of cracks.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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