

Contents lists available at ScienceDirect

Scripta Materialia

journal homepage: www.elsevier.com/locate/scriptamat

Regular article

Pressureless sintering of highly transparent AlON ceramics with CaCO₃ doping

Yingchun Shan ^a, Xiannian Sun ^{a,*}, Binglin Ren ^a, Haokai Wu ^a, Xialu Wei ^b, Eugene A. Olevsky ^b, Jiujun Xu ^{a,*}, Jiangtao Li ^c

- ^a Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
- ^b College of Engineering, San Diego State University, San Diego, CA 92182, USA
- ^c Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China

ARTICLE INFO

Article history: Received 20 June 2018 Accepted 13 August 2018 Available online xxxx

Keywords: AlON CaCO₃ addtitive Transparent ceramics Densification Grain growth

ABSTRACT

Employing CaCO₃ as sintering additive, highly transparent aluminum oxynitride (AlON) ceramics were pressurelessly fabricated from AlON powder at 1870 °C during150 min. The transmittance of the AlON doped with 0.3-0.4 wt% CaCO₃ is up to 83-85% at ~3700 nm for 2 mm thickness samples, and their transmittances are consistently higher than that of the AlON doped with the ideal amount of Y_2O_3 at wavelength ranging from 200 nm to 6000 nm. The AlON doped with CaCO₃ exhibits the transmittance of 71% at 4800 nm (typical band for infrared targeting), which is higher by 6% than that of the doped Y_2O_3 .

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Transparent aluminum oxynitride (AlON) ceramics are one of the most promising transparent ceramic materials for infrared/visible windows used in severe environments, such as high temperature, abrasion, corrosion, etc., due to their excellent optical transparency properties, high strength and hardness, and good chemical inertness [1–4]. AlON ceramics can be sintered by pressureless sintering, hot pressing sintering, hot isostatic pressing, spark plasma sintering, etc. [5–8]. Among those methods, pressureless sintering is a preferred technology due to its significant advantage in fabricating large size and complicated components.

Generally, sintering additive is always required to fabricate transparent AloN ceramics. Currently, Y_2O_3 , La_2O_3 and MgO have been chosen as sintering additives to accelerate the densification process of AloN ceramics [5,9–13]. Among these additives, Y^{3+} is believed to enhance the mobility of grain boundaries and accelerate grain growth, and 0.5 wt% Y_2O_3 was reported to be the ideal doping amount to obtain AloN ceramics with high transparency [9,14]. At the same time, La^{3+} and Mg^{2+} can inhibit the abnormal grains growth [9,13,15]. Consequently, La_2O_3 and MgO are usually selected as grain growth inhibiters to co-dope with Y_2O_3 to fabricate transparent AloN ceramics [13,15]. It is commonly recognized that high densification and reducing the amount of scattering and refracting sources are all a must to ensure the optical quality of fabricated AloN ceramics. To further improve the

properties of transparent AlON ceramics, it is necessary to find more sintering additive candidates.

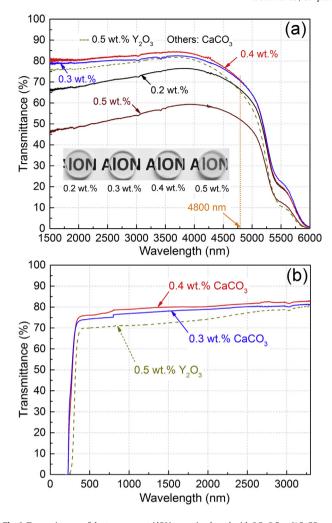

Recently, it was reported that proper amount of CaO dopant can promote densification and grain growth of MgO·1.5Al₂O₃ and YAG ceramics at a suitable sintering temperature [16,17]. It is understandable that it is Ca2+ that is being used as dopant for fabrication of MgO·1.5Al₂O₃ and YAG ceramics, which implies that it is highly possible that Ca²⁺ can also induce positive properties in the densification process of AlON ceramics. It is well known that CaO is easy to react with H₂O to form Ca(OH)₂ at room temperature, which means a nonignorable small amount of Ca(OH)₂ may exist in CaO additive during fabrication process. This Ca(OH)₂ is decomposed into CaO and H₂O at ~1200 °C, where H₂O is incompatible with sintering furnace environment. To avoid the risk induced by unexpected H₂O, CaCO₃ was mixed with AlON powder to fabricate transparent AlON ceramics in this study. As a matter of fact, CaCO₃ decomposes into CaO and CO₂ at ~825 °C. More importantly, the decomposition temperature of CaCO₃ is much lower than the starting temperature of AlON ceramics sintering (~1300 °C) [6]. Therefore, it is still CaO that is employed to be a sintering additive, i.e., Ca²⁺ is being used as a dopant for sintering AlON ceramics.

Table 1Effects of doping amount of CaCO₃ on the relative density of AlON ceramics.

Doping amount of CaCO ₃ (wt%)	0.2	0.3	0.4	0.5
Relative density (%)	99.70	99.92	99.94	99.62

Corresponding authors.

E-mail addresses: xsun@dlmu.edu.cn (X. Sun), jjxu@dlmu.edu.cn (J. Xu).

Fig. 1. Transmittance of the transparent AlON ceramics doped with 0.2–0.5 wt% $CaCO_3$ and 0.5 wt% Y_2O_3 at 1500–6000 nm (a), doped with 0.4 wt% $CaCO_3$ and 0.5 wt% Y_2O_3 at 190–3300 nm (b). Insert: photographs of AlON ceramics doped with 0.2–0.5 wt% $CaCO_3$.

The pure AlON powder was firstly synthesized by carbothermal reduction and nitridation (CRN) method (detailed fabrication process is described in Ref. [18]), then 0.2 wt%, 0.3 wt%, 0.4 wt% and 0.5 wt% CaCO $_3$ (99.99%; Macklin, China) were added into the obtained AlON powder, respectively. Using Si $_3$ N $_4$ ball as milling media, mixture of the powders of AlON and CaCO $_3$ were grinded in absolute ethyl alcohol at 170 rpm for 24 h. The obtained slurry was fully dried and sieved to obtain the starting mixed powder. Then, 1.4 g of mixed AlON powder was packed into pellets of 13 mm in diameter under 50 MPa. The pellets were pressureless sintered within a graphite furnace in an atmosphere of 0.1 MPa N $_2$. All samples were heated to 1870 °C at a heating rate of 40 °C/min, the heating system was shut down after holding for 150 min. The sintered specimens were then grinded and polished at both sides to a thickness of 2 mm for the optical transmittance measurement.

The phase assemblage of the sintered samples was characterized by X-ray diffractometry (XRD; D/Max-ULtima1, Rigaku, Tokyo, Japan) using Co $K_{\alpha 1}$ radiation. The microstructure of the sintered samples was observed by field-emission scanning electron microscopy (FESEM; supra 55, Zeiss, Jena, Germany). Micrograph observation of the polished samples hot etched at 1640 °C for 40 min was performed using a metallurgical microscope (GX51, OLYMPUS, Japan). The grain area and the average grain size of AlON were statistically calculated, where the average grain size was proportional to the average value of diameters passing through the objects' centroid. Then, based on the calculated average grain size, the grain number was counted for every 36 µm as a group to analyze the grain size distribution. The bulk density of the sintered samples was measured by the Archimedes method. Optical transmittance of the samples in the wave range of 1500-6000 nm was recorded by the Fourier transform infrared spectroscopy (FTIR; Frontier, PE, USA). The transmittance of AlON ceramics at the wave range of 190-3300 nm was measured with a spectrophotometer (Cary 5000, Varian, USA).

The XRD pattern of all the samples after holding for 150 min at 1870 °C showed that only the AlON crystalline phase was detected. The absence of secondary phases means that the AlON grains were below its solubility limit [12]. Relative densities of all the sintered samples measured by the Archimedes principle are ≥99.62%, as listed in Table 1. It indicates that the AlON powder was fast densified to achieve a high

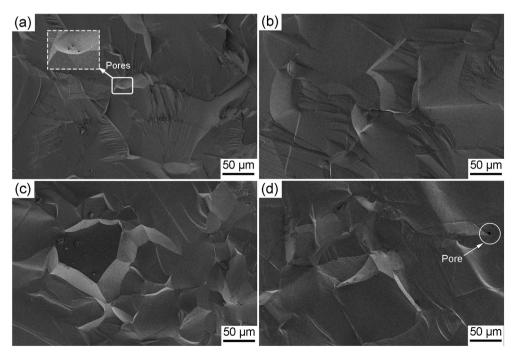


Fig. 2. SEM images of the fracture surfaces of the AlON ceramics with CaCO3 doping: (a) 0.2 wt%, (b) 0.3 wt%, (c) 0.4 wt% and (d) 0.5 wt%.

Download English Version:

https://daneshyari.com/en/article/7910114

Download Persian Version:

https://daneshyari.com/article/7910114

<u>Daneshyari.com</u>