Contents lists available at ScienceDirect

Scripta Materialia

journal homepage: www.elsevier.com/locate/scriptamat

Regular Article Twin-like fault in Mg–9.8 wt%Sn alloy

Chaoqiang Liu^{a,b}, Houwen Chen^{a,c,*}, Nick Wilson^d, Jian-Feng Nie^{a,b,c,**}

^a International Joint Laboratory for Light Alloys (Ministry of Education), College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China

^b Department of Materials Science and Engineering, Monash University, Victoria 3800, Australia

^c Electron Microscopy Center, Chongqing University, Chongqing 400044, PR China

^d CSIRO Manufacturing, Clayton, Victoria 3168, Australia

ARTICLE INFO

Article history: Received 7 April 2018 Received in revised form 29 May 2018 Accepted 7 June 2018 Available online xxxx

Keywords: Magnesium alloys Stacking fault Segregation HAADF-STEM DFT

ABSTRACT

Stacking faults in magnesium alloys have received considerable attention in recent years, but only intrinsic and extrinsic faults are studied at experimental and computational levels. Twin-like fault, designated as T_2 fault, has received little attention. In this study, we report for the first time the occurrence of T_2 fault in Mg–9.8 wt% Sn alloy. The T_2 fault and solute segregation in regions surrounding the fault were characterized using aberration-corrected scanning transmission electron microscopy and first-principles calculations. Sn atoms orderly distribute in the fault plane and its neighbouring planes, which drastically decreases the T_2 fault energy. © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Stacking faults in magnesium and its alloys have attracted considerable attention in recent years [1-13]. They include intrinsic faults I_1 and I₂ and extrinsic fault E [14]. The I₁ fault has two Frank partial dislocations of $1/6(02\overline{2}3)_{\alpha}$ bounding its two ends. Its formation involves two different mechanisms. One is to remove a closely-packed plane A (or B) by vacancy condensation, and shear the planes above the removed plane by $1/3\langle 01\overline{1}0\rangle_{\alpha}$. The other is to dissociate a $\langle c+a\rangle$ perfect dislocation [9, 10, 13]. The I₂ fault is bounded by two Shockley partial dislocations. It is produced by shearing a part of the hcp lattice by $1/3\langle 01\overline{1}0\rangle_{\alpha}$, or dissociating an $\langle a \rangle$ perfect dislocation [8, 10, 14]. The E fault is bounded by Frank partial dislocations of $1/2(0001)_{\alpha}$. It can form by inserting an extra C plane into the hcp stacking sequence, or by the dissociation of a $\langle c \rangle$ perfect dislocation [14, 15]. Apart from these three types of stacking faults, the fourth type, twin-like (T_2) fault, has received only some theoretical attention [1, 2, 5–7, 16–18]. The T₂ fault changes the stacking sequence from ABABABAB to ABABCBABA, or BABACABAB, and hence it leads to a twin-like arrangement of closely-packed planes with respect to the fault plane C. This fault has been thought to form from an I_2 [1, 5, 7]. However, all previous studies of T₂ fault were made based on firstprinciples density functional theory (DFT) calculations, and no experimental evidence has thus far been reported for their existence. These studies reported that the T_2 has higher energy than I_1 and I_2 but lower energy than the E in pure magnesium [1, 2, 5, 7]. Since the E has already been detected experimentally in pure magnesium [12] and a Mg–Zn–Y alloy [10], the T₂ might also exist in some magnesium alloys. In this paper we report, for the first time, the existence of T₂ in a Mg–9.8 wt% Sn alloy that was artificially aged, or electron-beam irradiated in a transmission electron microscope. The T₂ is always associated with ordered Sn segregation.

Alloy with a nominal composition of Mg–9.8Sn (wt%) was cast using the method reported in our previous study [19]. Specimens cut from the ingot were heat treated at 300 °C for 24 h, 400 °C for 24 h, then solution treated at 500 °C for 4 h, followed by quenching to water at room temperature. Artificial ageing treatments were conducted in silicone oil at 100 °C for 720 h. Thin foil specimens for high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) were prepared by mechanical polishing and ion-beam milling. HAADF-STEM images were acquired in a Cs-corrected FEI Titan G² 60–300 ChemiSTEM operated at 300 kV. A thin area of about 20 μ m² of a solution treated and water quenched specimen was irradiated with a spread electronbeam for 1 h in the TEM mode.

To calculate the generalized stacking fault energies (GSFEs) of T_2 in pure magnesium and Mg–Sn alloys, first-principles calculations based on DFT were performed within the Vienna Ab Initio Simulation Package (VASP) code [20] using the Generalized-Gradient Approximation exchange correlation functional of Perdew-Burke-Ernzerhof [21]. Atoms were treated using projector augmented-wave (PAW) pseudopotentials provided with VASP [22, 23]. The *k*-point meshes were constructed using the Monkhorst-Pack scheme [24]. To avoid interactions between two faults, a supercell containing 160 atoms and

^{*} Corresponding author at: College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China.

^{**} Correspondence to: J.-F. Nie, Department of Materials Science and Engineering, Monash University, Victoria 3800, Australia.

E-mail addresses: hwchen@cqu.edu.cn, (H. Chen), jianfeng.nie@monash.edu (J.-F. Nie).

20 (0002)_{α} planes was used, with the three principal vectors of the supercell being parallel to $[2\overline{110}]_{\alpha}$, $[01\overline{10}]_{\alpha}$ and $[0001]_{\alpha}$. Ionic relaxations were allowed to occur along $[0001]_{\alpha}$. The T₂ was generated by displacing the eighth (0002)_{α} plane by $1/3[0\overline{110}]_{\alpha}$. For one Mg–Sn alloy, one Mg atom on the eighth (0002)_{α} plane was replaced by Sn giving a supercell of Mg₁₅₉Sn₁. Since the T₂ is always associated with an ordered segregation of Sn similar to those in the β' -Mg₃Sn metastable phase [25], the GSFE to generate a T₂ in another Mg–Sn alloy with ordered Sn segregation was also calculated. This second supercell was constructed so that the configuration of Sn was similar to that in β' -Mg₃Sn, giving an atomic composition of Mg₁₅₀Sn₁₀. All values of the fault energies (*E*_F) were calculated according to the following equation:

$$E_{\rm F} = E_{\rm T} - N_{\rm Mg} E_{\rm Mg} - N_{\rm Sn} E_{\rm Sn(sol})$$

where $E_{\rm T}$ is the total energy of a supercell, $N_{\rm Mg}$ and $N_{\rm Sn}$ are the numbers of Mg and Sn atoms in the supercell, respectively, $E_{\rm Mg}$ is the energy per Mg atom in pure magnesium, and $E_{\rm Sn(sol)}$ is the energy per Sn atom in magnesium solution.

Fig. 1 shows atomic-resolution HAADF-STEM images of two T₂ faults in aged samples. These two faults were both on the C planes. Closer examination reveals that some atomic columns in each of these two fault planes deviate slightly from their original positions of the α -Mg lattice. Yellow arrows in the image indicate four of the deviated columns at the ends of the faults. The displacement of these atomic columns is along the [1100]_{α} direction, which is exactly the displacement required to move these atomic columns from position A to position C. The fault shown in Fig. 1a is only partially formed—only some columns have

Fig. 1. Atomic-resolution HAADF-STEM images showing (a) a partially formed T₂ fault and (b) a fully formed T₂ fault in samples aged at 100 °C for 720 h. Purple solid dots indicate positions of periodic columns of α -Mg lattice and purple hollow dots indicate positions of some columns that used to be at position A in α -Mg lattice. Yellow solid dots indicate positions of some columns at position C in fault planes. Two purple arrows mark two untransformed atomic columns in (a). Yellow arrows mark some columns in the fault planes that slightly deviate from the periodic positions of the α -Mg lattice. A, B and C represent stacking sequence of the closely packed planes. Electron beam is parallel to [1120] $_{\alpha}$. (For interpretation of this article.)

transformed from position A to position C and there are still two columns at position A in the fault plane, as marked by purple arrows. Around the partially formed fault, there was an ordered Sn segregation-the Sn-rich columns and Mg columns distribute alternately in the fault plane and its neighbouring planes, except those two untransformed columns, and those Sn-rich columns are symmetrical to the fault plane. The fault shown in Fig. 1b is fully formed. At the left side of this fault, there is a GP zone. The formation of GP zones in this alloy has been reported in our previous study [25]. Sn segregation around each fault is also visible and the arrangement of Sn-rich columns is again ordered and symmetrical. While the ordered and symmetrical features around the T₂ fault are similar to those in twin-related variants of β' -Mg₃Sn precipitates [25], the T₂ fault is structurally distinctive from the β' precipitate. For the stacking sequence of closely-packed planes of ABABABA of Mg lattice, the T₂ fault has to be in plane C when it forms inside the Mg lattice. Although the formation of the T₂ also results in a symmetrical arrangement of closely-packed planes with respect to the T_2 fault plane (C plane, which is a twin plane), the stacking sequence of the closely-packed planes at each side of the T₂ fault plane is ABABAB only, i.e. there is no ABCA stacking sequence that is structurally identical to that of the β' phase. The formation of the twin-related β' variants changes the stacking sequence from BABABAB to BACBCAB, where the italic letter *B* represents the twin plane. Note that the twin plane in this case is always B or A, and that there is a β' unit at each side of the twin plane.

 T_2 were not frequently detected in aged samples. But many T_2 were found when thin foils of solution treated and water quenched samples were irradiated by electron beam for 1 h. Fig. 2a shows a HAADF-STEM image of such T₂ faults, as marked by yellow arrows. It is common to observe the existence of paired T_2 faults, with a separation distance of 3d(0002) between the two faults in the pair, Fig. 2b, as circled by yellow solid line ellipses in Fig. 2a. Occasionally, T₂ pairs with spacing of $5d_{(0002)_{c}}$, Fig. 2c, were also found, as circled by yellow dashed line ellipses in Fig. 2a. Fig. 2b shows an enlarged HAADF-STEM image of a T₂ pair with spacing of $3d_{(0002)_{\alpha}}$. The closely-packed planes have a stacking sequence of BACABCBA, with the two T₂ faults lying on the C plane. The atomic columns in each of these two fault planes have slightly deviated from their original positions in the α -Mg lattice, as marked by yellow arrows in Fig. 2b. The deviation directions in these two fault planes are opposite—it is in the $[\overline{1}100]_{\alpha}$ direction in the top fault but $[1\overline{1}00]_{\alpha}$ in the bottom fault. Again, an enrichment of Sn atoms is visible around these two T₂ faults. While the Sn-rich columns in the region between the two T₂ faults have a distribution resembling that in β' -Mg₃Sn and the local stacking sequence of closely-packed planes (CABC) is similar to that of a four-layer structure of β' , the T₂ pair is intrinsically different from β' , because the stacking sequence of β' has to be BCAB or ABCA (Figs. 2d and 3d), rather than CABC, when it forms inside the Mg lattice with the ABABAB stacking sequence. Furthermore, there is a Shockley partial at the end of β' , but no Shockley at the end of the T₂ pair.

Based on images shown in Figs. 1 and 2, the formation mechanism of the T₂ is proposed to involve displacement of atomic columns from their positions in a closely-packed plane of A or B to positions in C. For α -Mg lattice, the magnitude of this displacement is $1/3\langle 10\overline{10}\rangle_{\alpha}$. Since there are three crystallographically equivalent directions of $\langle 10\overline{10}\rangle_{\alpha}$, i.e., $[10\overline{10}]_{\alpha}$, $[0\overline{1}10]_{\alpha}$ and $[\overline{1}100]_{\alpha}$, there are three different paths to generate a T₂. When the electron beam is parallel to $[11\overline{20}]_{\alpha}$, the whole magnitude of $1/3[\overline{1}100]_{\alpha}$ displacement is projected onto the $(11\overline{2}0)_{\alpha}$, since the displacement direction is perpendicular to the electron beam. For $1/3[0\overline{1}10]_{\alpha}$ or $1/3[10\overline{1}0]_{\alpha}$ displacement that is at 30° to the electron beam, only half of its magnitude is projected onto $(11\overline{2}0)_{\alpha}$. Thus, those displacements that generate the T₂ in Figs. 1 and 2 are actually $1/3[0\overline{1}10]_{\alpha}$ or $1/3[10\overline{1}0]_{\alpha}$ due to their magnitudes being $1/6[1\overline{1}00]_{\alpha}$ on $(11\overline{2}0)_{\alpha}$. Fig. 3a show formation mechanism of a T₂. This fault is generated by displacing some atomic columns by $1/3[0\overline{1}10]_{\alpha}$ in

Download English Version:

https://daneshyari.com/en/article/7910283

Download Persian Version:

https://daneshyari.com/article/7910283

Daneshyari.com