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A candidate fusion engineering material, WC-FeCr
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A new candidate fusion engineering material, WC-FeCr, has been irradiated with He ions at 25 and 500 °C. Ions
were injected at 6 keV to a dose of ~15 dpa and 50 at. % He, simulating direct helium injection from the plasma.
The microstructural evolution was continuously characterised in situ using transmission electron microscopy. In
the FeCr phase, a coarse array of 3–6 nm bubbles formed. In the WC, bubbles were less prominent and smaller
(~2 nm). Spherical-cap bubbles formed at hetero-phase interfaces of tertiary precipitates, indicating that en-
hanced processing routes to minimise precipitation could further improve irradiation tolerance.
© 2018 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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The leading candidates for plasma facing materials (PFMs) in toka-
mak fusion power plants are tungsten and its alloys. The inherent
brittleness of metallic tungsten [1] precludes its use in many structural
applications, which has sparked research into tungsten-based compos-
ites with enhanced ductility. Recent approaches include fibre-
reinforced tungsten [2], tungsten heavy alloys [3] and tungsten
laminates [4]. One candidate class ofmaterials that arewidely employed
in the extreme wear environments, but are as yet little explored as
PFMs, is WC-composites. These materials possess excellent neutronics
[5] and mechanical [6] properties, while they can be fabricated and
shaped inexpensively. A particularly promising binder is the FeCr sys-
tem, as it is low-activation and resistant to dry oxidation and irradiation.

Like all candidate PFMs amajor concernwithWC-FeCr composites is
how their properties degrade under irradiation, in particular under
helium bombardment. Heliumwill accumulate in PFMs via twomecha-
nisms: firstly via (n, α) transmutation reactions and secondly from
direct injection of helium ash from the fusion plasma, particularly in
the near-surface region. Both processes can lead to formation of helium
bubbles and associated defect structures (interstitial-vacancy pairs,
dislocation loops, etc.). While these processes are well understood in
many structural nuclear materials [7], they are as yet unstudied for
WC-composites.

The general understanding of ion-irradiation in WC-composites
is restricted mostly to surface hardening produced by Nx+ ions on

WC-Co (i.e. non fusion-compatible) materials [8]. Whilst the extent to
which these studies pertain to helium irradiation orWC-FeCr is limited,
we nevertheless discuss the general observations here. Most
studies, typically employing 50–100 keV ions, report a two-stage
microstructure-property evolution with dose: an initial increase in
defect content, with a corresponding hardening, peaking at a dose of
~1017 ions/cm2. Hardening is attributed to nitride particles forming
within the binder [9] and high densities of dislocations and planar
defects within WC particles [10]. Defect density is strongly dependent
on particle orientation relative to the ion-beam [11]. This hardening is
followed by softening due to amorphization of WC. Since the nitrogen
is soluble (unlike helium), bubbles are never observed.

Irradiation of WC-composites with Hex+, on the other hand, is rela-
tively poorly understood. Available information is limited tomechanical
property evolution and in WC-Co only. For example, when irradiated
with 32 MeV ions to ~1 × 1017 ions/cm2, the surface hardness rises
monotonically up to a 30% increase [12, 13]. These surface measure-
ments were not on the helium accumulated region of the specimen
(~100 μm below) and no microstructural observations were made.
While some speculation about the performance of WC-FeCr can be
made from previous studies of its constituents (e.g. monolithic Fe-Cr
alloys [14, 15]) such predictions are limited, since there is currently little
understanding reported on the response of metal-ceramic interfaces,
which – aswewill showhere – can dominatemicrostructural evolution.

In what follows, we report He ion irradiation with in-situ transmis-
sion electron microscopy (TEM) on a WC-FeCr composite. Irradiations
were performed at room temperature and 500 °C (a local maximum
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for swelling in ion-irradiated FeCr alloys [15]). Bubble size is reported as
a function of irradiation dose and temperature. Large bubbles are
observed at the interface of impurity phases, which could significantly
embrittle the material. Our observations enable processing recommen-
dations for removing these phases and thus enhancing the material's
irradiation tolerance.

Tungsten carbide composite plate was obtained from Sandvik Hype-
rion Ltd. It was manufactured via a conventional liquid phase sintering
process, details of which can be found elsewhere [16]. The material
contained a nominal weight fraction of 0.9 WC particles and 0.1 Fe-Cr
binder, which itself had respective weight fractions of 0.92 Fe and 0.08
Cr. A Cr fraction of 0.08 was selected as an intermediary value between
0.05 and 0.09 – which are known local minima in FeCr alloys for void
swelling [15] and ductile-brittle transition temperature [17],
respectively.

TEM samples were prepared using an FEI Quanta dual beamFocused
Ion BeamsystememployingGa ions. Ion-irradiationswere performed at
the Microscope and Ion Accelerator for Materials Investigations
(MIAMI) facility, details of which are given elsewhere [18]. Bright-
field (BF) images were collected using a JEOL JEM-2000FX TEM,
operated at 200 keV, using a slightly off zone-axis beam. The sample
temperature was controlled during irradiation using a Gatan 652

double-tilt heating holder. High-angle annular dark-field (HAADF)
TEM images of the as-received material were collected on a JEOL JEM-
2100F microscope.

Samples were implanted with 6 keV He+ ions to a dose of
2 × 1017 ions/cm2. Ion stopping distributions were calculated (for
low helium concentrations) using the software package SRIM [19].
The depth of the helium distribution's maximum was predicted to be
19 and 26 nm for WC and FeCr, i.e. well within the TEM foil thickness.
The corresponding maxima in injected helium and displacements per
atom (dpa) are reported in Table 1, alongside values for one year of
neutron irradiation under a fusion relevant spectrum, as calculated
using the FISPACT-II code [20]. The peak ion damagewas approximately
15 dpa for both phases, which is comparable to one year of neutron
damage (10–16 dpa). The maximum amount of helium introduced, if
fully retained – i.e. not redistributed or lost from the foil edges –
would correspond to ~50 at. %. Thus, the amounts of He introduced
here are far in excess of the predicted annual He production from
neutron irradiation alone (~0.02 at. %). Instead, they more closely
resemble the direct injection of helium ash in the near surface region
from the fusion plasma.

We first report the structure of the un-irradiated material as
observed in the TEM. Fig. 1 contains a HAADF image in the top-left,
showing heavier elements, i.e. WC particles, in bright contrast and ligh-
ter elements, i.e. FeCr binder, in dark. TheWC particles are ~0.5–1 μm in
diameter. Turning to the EDS maps in the smaller boxes, two
other phases are distinguishable, in addition to the nominal
constituents. Firstly, in the Cr-map, there are four regions of ~100 nm
in diameter, delineated by dotted circles, where the Cr-content is high.
Semi-quantitative chemical analysis estimates the Cr-enrichment to
be ~10-fold higher than the binder. The significant carbon content,
and negligible W or Fe in these particles suggest they are Cr-carbide,

Fig. 1. Top left - HAADF image of the as-receivedmaterial showingWC (light) and FeCr (dark). Smaller images - EDS dotmaps showingW (red), Fe (blue), Cr (purple), C (green) and their
sum (Layered). Cr-carbides are indicated by dotted circles and M6C by arrows.

Table 1
Maxima in displacement damage and injected helium, as predicted from SRIM (ions),
compared to FISPACT-II simulations (neutrons).

Phase Neutron
dpa

Ion
dpa

Neutron He
(at. %)

Ion He
(at. %)

WC 10 15 0.020 49
FeCr 16 16 0.019 48
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