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A B S T R A C T

Coercivity of nanocrystalline magnetic alloys depends on the grain size D according to a power law Hc ∝ Dn

with n from 2 to 6. The law Hc ∝ D6 is derived based on the random magnetic anisotropy model and is clearly
manifested in experimental studies of some Finemet type alloys. In this letter using computer modeling
it is demonstrated that a power-law behavior with the exponent n less than 6 can be due to a grain-size
distribution. An increase of grain size variance results in a decrease of the exponent from 6 to the value of
about 3.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Nanocrystalline alloys are of increasing interest as soft magnetic
materials. The combination of an extremely low coercivity and a high
magnetic permeability along with low eddy current losses makes
them attractive for applications [1-6]. It was found that coercivity Hc

in nanocrystalline alloys dramatically depends on the grain size D if
D < L0 = v

√
A/K, where L0 is known as a basic exchange length, v is

a dimensionless parameter of the order of one [7], A is an exchange
stiffness constant and K is a magnetic anisotropy constant. A power
law Hc ∝ D6 was derived using the random magnetic anisotropy
(RMA) model [8,9]. It was confirmed on some Finemet type alloys
and nanocrystalline Ni [1,3,10]. Accumulated to the present moment
extensive experimental studies of nanocrystalline alloys yielded a
generalized power law Hc ∝ Dn, where the exponent n can vary from
2 to 6 [1,11]. Besides the grain size upper limit of L0 for the Hc ∝ Dn

applicability, there is experimentally revealed a lower one below
which coercivity varies very slightly. The one order of magnitude
variation in D within these limits results in the change of coercivity
up to six orders according to the law Hc ∝ D6. For such steep depen-
dence, a grain-size distribution should have a significant effect on the
Hc(D). A theoretical approach considering this effect was proposed in
Ref. [12].
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The fluctuations of magnetic anisotropy energy: [〈K〉Vex]2 =∑
Ni(ViK)

2, where Ni is a number of grains of the volume Vi within
the magnetic correlation volume Vex, were analyzed. Assuming that
Ni = Vex/Vi = (Lex/Di)3 and the grain size Di is always smaller than
the magnetic correlation length Lex, the dependence Hc ∝ 〈D〉6 was
obtained [13,14] as for the case of uniform grains. The variance of
grain sizes affected only the value of the proportionality coefficient.
Nevertheless, the influence of a grain-size distribution on coercivity
of nanocrystalline alloys within RMA model is more complicated.

The number of grains within the magnetic correlation volume is
N = Vex/V = (Lex/D)d for a system of exchange-coupled grains
of an arbitrary dimensionality d [11,15-19]. The coercivity is finally
expressed as follows [1,11,15-19]:

Hc ∝ 〈K〉
MS

=
K

MS
•

(
D√
A/K

) 2d
4−d

, (1)

where MS is a saturation magnetization. Indeed, observed coerciv-
ities of nanocrystalline thin films and nanowires, which both have
low-dimensional magnetization correlations, corresponded well to
power-law dependencies (1) with the exponents of 2 (d = 2) and of
2/3 (d = 1) respectively [1,15,20,21]. For bulk materials (d = 3) the
exponent of 6 is expected. Let us remind that Eq. (1) is valid if D < L0.
A grain-size distribution can lead to a violation of the requirement for
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some grains within the Vex that results in N = Vex/V < (Lex/〈D〉)3 for
the 3D case. This discrepancy can be resolved by the assumption of
N = (Lex/D)d with effective d < 3 if supposing the scaling approach
is still applicable. Thus, in bulk nanocrystalline alloys the power-
law behavior Hc ∝ Dn with n < 6 can be caused by a grain-size
distribution. This work is focused on the study of this opportunity
using compute modeling of major hysteresis loops of exchange-
coupled polydisperse ensembles of grains with the random magnetic
anisotropy.

An ensemble of close packed polyhedra was considered as a
model of a polycrystalline alloy. It was being constructed in two
stages. At the first one, a gradual pouring of spherical particles with
a lognormal distribution of diameters into a container was per-
formed using the molecular dynamic package LAMMPS [22]. After
that, in order to eliminate edge effects of pouring, the central part
of the ensemble was cut out and used further. It was close to a
cubic shape and consisted of at least 62,000 particles. At the sec-
ond stage, the radical Voronoi tessellation of the ensemble was done
using diameters of particles as weights and taking into account peri-
odic boundary conditions. This procedure was realized based on the
VORO++ library [23] which allowed to obtain all required statistics
for polyhedra (volumes, lists of neighbors, lists of contact areas, etc.).
A cross-section of the ensemble created as described above is shown
in Fig. 1 (a). It was able to tune polyhedra size distribution, which
satisfied well the lognormal one (Fig. 1 (b)), varying the spheres
size distribution at the first stage. Hereafter the quantity D = 3√V
was chosen as a characteristic size of a polyhedron. Besides polydis-
perse ensembles of polyhedra, an arranged monodisperse ensemble
of 64,000 rhombic dodecahedra (40 × 40 × 40) was considered [24].

For polydisperse ensembles the following statistics was obtained:
a mean grain size 〈D〉 = 1

N

∑N
i Di, a volume-weighted mean grain size

〈D〉V =
∑N

i miDi, a standard size deviation s =
√

1
N

∑N
i (Di − 〈D〉)2

and a volume-weighted one sV =
√∑N

i mi(Di − 〈D〉V )2, where N is a

number of particles and mi = Vi/
∑N

i Vi. The different types of aver-
aging are relevant for both a theoretical analysis of modeling and its
potential comparison with experiments (e.g. TEM and XRD provide
〈D〉 and 〈D〉V respectively).

It was assumed that each polyhedron has a uniform magnetiza-
tion changing by the coherent rotation. This assumption, that leads
us to the single-spin approximation [25,26], is valid if the inter-
atomic exchange within small grains is sufficiently strong to ensure
parallel spin alignment [27]. Exchange interaction between neigh-
boring grains i and j was simulated as a direct Heisenberg-like one
Eex = −JintSij(�li • �lj) [24-26], where Jint is an intergrain interaction
constant, Sij is a contact area between adjacent grains and �li,j are
unit vectors of magnetizations (the inset of Fig. 1 (a)). For the case
of ideal grain interface and the simple cubic crystal lattice the fol-
lowing equalities can be established: Jint = J/a2 = A/a, where J is
an exchange constant and a is an atomic lattice constant. Actually,
it is often assumed that Jint � J/a2 [24-29]. The uniaxial mag-
netic anisotropy with uniform constant K and randomly oriented
easy magnetization axes (EA) of grains was used in our modeling.
Magnetostatic interaction between grains was neglected. Hence, the
normalized energy of a grain i was calculated by the following:

4i = −(�li • �ni)2 − 2�li • �h −
Ni∑

j=1

JintSij

KVi
�li • �lj, (2)

where �ni is a unit vector, that is collinear to EA, �h = �H/Ha is an exter-
nal magnetic field reduced to the anisotropy one Ha = 2K/MS, Ni

is a number of neighboring grains and Vi is the grain volume. The
list of constants for modeling was the following: Jint = 1 erg/cm2,
MS = 103 emu/cm3 and K = 106 erg/cm3. Mean grain sizes 〈D〉
varied from 10 to 60 nm.

Fig. 1. A cross-section of a model polydisperse ensemble of grains (a). Its color pallet
corresponds to projections of unit vectors �ni,j , that are collinear to easy magnetization
axes (EA), on a normal of the cross-section plane. In the inset there is a 2D diagram
illustrating quantities used for energy calculations (2): �li,j are unit vectors of mag-
netizations, Vi is a volume of grain i, Sij is a contact area of adjacent grains i and j.
Histograms of grain sizes D, determined as 3√V , are presented for ensembles with
different standard size deviations s (b). Fits of lognormal distribution functions to
histograms are given with solid lines.

Equilibrium micromagnetic structures of ensembles were
obtained by reiterative subsequent energy (2) minimization for all
grains at each magnitude of magnetic field [24,30]. Since in our
model only adjacent grains interact with each other, the minimiza-
tion was realized taking into account periodic boundary conditions
for nearest neighbors only. During the procedure coordinates of vec-
tors �li,j were determined with uncertainty of 10−9; the number of
iterations was up to 103. These parameters along with the number
of grains provided the compromise between a computing time and
an accuracy of results.

Major hysteresis loops of the monodisperse ensemble and a series
of polydisperse ones with fixed s/〈D〉 were calculated using the
described above technique. In Fig. 2 only segments of the hystere-
sis loops near coercivity are presented. The coercivity decreased
and remanence increased with the decreasing 〈D〉. Demagnetization
curves of polydisperse ensembles (Fig. 2, bottom; s/〈D〉 = 0.16)
were flatter than the ones of the monodisperse ensemble at large
grain sizes (e.g. 60 nm).

Coercivities of both monodisperse Hc(D) and polydisperse ensem-
bles Hc(〈D〉) had close values approaching a limit (Fig. 3), which is
the coercivity of the Stoner-Wohlfarth ensemble HSW

c = 0.479 • Ha
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