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Kinetics of grain boundary segregation inmulticomponent systems – The
example of a Mo-C-B-O system
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Amodel for kinetics of segregation of several interstitial and substitutional components to different kinds of
traps at grain boundaries is derived by applying the Thermodynamic Extremal Principle. Evolution equa-
tions for the site fractions of the segregating elements at the grain boundary, considered as independent
variables, are presented and solved numerically. The kinetic model is applied to the case of Mo containing
C, O, and B as impurities and a spectrum of trapping energies obtained from first principles simulations.
This newly developed model offers an efficient tool for understanding segregation from several kinds of
components at different types of traps.
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Grain boundary (GB) segregation is of high practical relevance as or-
igin of GB embrittlement or strengthening. Here we refer to a very re-
cent overview by Lejček et al. [1] and an overview on hundreds of
calculations concerning the change of GB cohesion by Gibson and
Schuh [2]. GB segregation of interstitial and substitutional migrating
atoms has been also studied experimentally in numerous papers, see,
e.g., [3] and the references there. The GB segregation can be treated
thermodynamically, as stated in the review paper by Kalidindi et al.
[4]. Since the segregation is a time-dependent process controlled by
bulk diffusion, kinetic models have been developed, see e.g. [5–7].
Some of the authors recently applied the Thermodynamic Extremal
Principle (TEP) [8] for deriving an equation for segregation kinetics of
one interstitial component to one kind of traps, see [9]. When compar-
ing to segregation in a real material, the assumption of one single trap
is, however, a strong restriction. Real grain boundaries exhibit several
trapping sites with different trapping energies and, thus, a distribution
of trapping energies must be assumed [10]. Furthermore, real materials
usually contain several species of impurities simultaneously and the so-
called site-competition effect can strongly alter the GB content. Hence,
we extend the previous approach and develop a multicomponent and
multitrapping kinetic thermodynamic model which can be coupled in

a straightforward way to density functional theory calculations [11,12]
providing the distribution of trapping energies. The simulation ap-
proach is demonstrated for a simple example of high practical rele-
vance where a metal is heated to a high temperature T0 and cooled
down with certain kinetics. In general one cannot assume that the
segregation state is the equilibrium state corresponding to T0 since
during cooling the solutes (especially the interstitials) can diffuse
and increase the GB occupation. It is also not trivial to find out at
which temperatures the GB state is “freezed in” and, hence, a full
multi-component and multi-trapping kinetic simulation accounting
for the temperature history represents the only possibility to quan-
tify the segregation state.

In our kinetic model we assume N components with fixedmean site
fractions xk in the system, k= 1,…, N segregating to n types of traps in
grain boundaries with the volumetric fractions (related to the whole

system) fi, i = 1, …, n,
Pn

i¼1 f i ¼ f . To each segregating component
k and type of trap i a molar trapping energy Ek

i is assigned. As a system
of total volume Ω we consider a polycrystal of grains with effective ra-
dius RG involving one mole of lattice positions. To describe the state of
the system, we introduce as internal variables:

• xk , k = 1, …, N being the site fraction of segregating component k in
the bulk of grains,

• x̂ik, k= 1,…, N, i= 1,…, n being the site fraction of segregating com-
ponent k at traps of type i.
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The mass balance enforces for k = 1,…, N

xk ¼ 1− fð Þxk þ
Xn
i¼1

f ix̂ik; ð1Þ

which allows calculating the constraints for rates _xk and _̂x
i
k as

1− fð Þ _xk þ
Xn
i¼1

f i _̂x
i
k ¼ 0; k ¼ 1;…;N ð2Þ

As already outlined in [9] the Gibbs energy G of a system can be cal-
culated based on the so-called trapping concept. The Gibbs energy G
consist of three terms, i.e. G0 as contribution independent of the vari-

ables xk and x̂ik , G as contribution of untrapped atoms in the bulk of

the grains, and Ĝ as contribution of trapped atoms in grain boundaries,
yielding

G ¼ G0 þ Gþ Ĝ: ð3Þ

The contributions G and Ĝ follow with Rg as gas constant and T as
temperature

G ¼ 1− fð ÞRgT
XN
k¼1

xk lnxkð Þ þ 1−
XN
k¼1

xk

 !
ln 1−

XN
k¼1

xk

 !" #
ð4Þ

and

Ĝ ¼ RgT
Xn
i¼1

f i
XN
k¼1

x̂ik ln x̂ik
� �

þ 1−
XN
k¼1

x̂ik

 !
ln 1−

XN
k¼1

x̂ik

 !" #

þ
Xn
i¼1

f i
XN
k¼1

x̂ikE
i
k

� �" #
: ð5Þ

The quantity Ek
i represents the change of the energy of the system, if

one mole of atoms of component k occupies the traps of type i. Atoms
are trapped for Eki b 0 and escape for Eki N 0. The partial derivatives of G

with respect to xk and x̂ik read after some analysis as

∂G
∂xk

¼ 1− fð ÞRgT ln xk= 1−
XN
l¼1

xl

 !" #
; k ¼ 1;…N ð6Þ

∂G

∂x̂ik
¼ f i RgT ln x̂ik= 1−

XN
l¼1

x̂il

 !" #
þ Eik

( )
; k ¼ 1;…N; i ¼ 1;…;n: ð7Þ

As the individual traps in the GB are very near to each other and also
interconnected by fast diffusion paths [13–15], it is justified to assume
thermodynamic equilibrium amongst the traps for each component.

For fixed values of xk the global equilibrium corresponds to mini-

mum of Ĝ with respect to x̂ik and xk obeying the constraints Eq. (1).
The necessary conditions for the constrained minimum read with the
Lagrange multipliers λk, k = 1,…, N as

∂

∂x̂ik
G−λk

Xn
j¼1

f jx̂ j
k þ 1− fð Þxk−xk

0
@

1
A

2
4

3
5 ¼ 0; k ¼ 1;…N; i

¼ 1;…;n; ð8Þ

∂
∂xk

G−λk

Xn
j¼1

f jx̂ j
k þ 1− fð Þxk−xk

0
@

1
A

2
4

3
5 ¼ 0; k ¼ 1;…;N ð9Þ

Performing the derivatives in Eqs. (8)–(9) using Eqs. (6)–(7) yields
immediately

RgT ln x̂ik= 1−
XN
l¼1

x̂il

 !" #
þ Eik−λk ¼ 0; k ¼ 1;…N; i ¼ 1;…;n; ð10Þ

RgT ln xk= 1−
XN
l¼1

xl

 !" #
−λk ¼ 0; k ¼ 1;…;N: ð11Þ

From Eqs. (10)−(11) the Lagrange multipliers λk can be eliminated

for each k reading with ~E
i
k ¼ Eik=RgT as

ln x̂ik= 1−
XN
l¼1

x̂il

 !" #
þ ~E

i
k− ln xk= 1−

XN
l¼1

xl

 !" #
¼ 0; k

¼ 1;…;N; i ¼ 1;…;n: ð12Þ

A generalized McLean equation is obtained directly from Eq. (12) as

x̂ik= 1−
XN
l¼1

x̂il

 !
¼ xk= 1−

XN
l¼1

xl

 !
exp −~E

i
k

� �
; k ¼ 1;…;N; i

¼ 1;…;n: ð13Þ

This equation combines the White-Coghlan extension to multiple
sites [10–12] with the extension to multiple solutes as outlined in e.g.
[1]. Similar as in these earlier models we do not take into account direct
interactions between the solutes. That would require trapping energies
being dependent on the solute concentrations of all sites.While such ef-
fects are interesting to explore in general, we do not include them here.
Recent work on C, O and B in Mo has shown that such interactions are

very weak at the GB [16]. Finding of equilibrium values of x̂ik and for a
given xk requires, with using Eq. (2), the solution of the set of N ⋅ n
non-linear equations, Eq. (13). However, we are not only interested in
equilibrium values but also in the segregation kinetics. For this reason
we engage the TEP [8] and have to formulate the dissipation D and the
dissipation function Q.

The total dissipation D of the system, see [9], Sect. 1.4, is given by

D ¼ −
XN
k¼1

∂G
∂xk

_xk þ
Xn
i¼1

∂G

∂x̂ik

_̂x
i
k

 !
ð14Þ

and using Eq. (2) as

D ¼
XN
k¼1

Xn
i¼1

f i

1− f
∂G
∂xk

−
∂G

∂x̂ik

 !
_̂x
i
k: ð15Þ

Inserting Eqs. (6)–(7) yields

D ¼ −
XN
k¼1

Xn
i¼1

f iRgT ln
x̂ik 1−

PN
l¼1 xl

� �
xk 1−

PN
l¼1 x̂

i
l

� �
2
4

3
5þ ~E

i
k

8<
:

9=
; _̂x

i
k: ð16Þ

As next step towards kinetic equations the dissipation function Q is
introduced (for details, see [8], Sect. 1.4). The dissipation function Q is
formulated by the squares of the diffusive fluxes, see, e.g., [17], Sect.
3.2 and [9], accounting both for bulk diffusion in the grain, characterized
by coefficients Dk (first term in Eq. (17)) and also for exchange of the
components amongst traps in the GB (second term in Eq. (17)), as

Q ¼
XN
k¼1

RgTR
2
G 1− fð Þ2

15xkDk

_xk
� �2

þ
Xn
i¼1

XN
k¼1

Ui
k f i _̂x

i
k

� �2

: ð17Þ

RG denotes the effective radius of a grain (do not confuse RG and Rg).
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