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A B S T R A C T

The statistical-thermodynamic dislocation theory developed in our earlier studies is used here in an anal-
ysis of the experimental observations of adiabatic shear banding in steel by Marchand and Duffy (1988).
Employing only a small set of physics-based parameters, we are able to explain experimental stress-strain
curves, including yielding transitions and strain hardening, over wide ranges of temperatures and strain
rates. We make a simple model of weak notch-like perturbations that, when driven hard enough, trigger
shear banding instabilities that are quantitatively in agreement with those seen in the experiments.

© 2018 Elsevier Ltd. All rights reserved.

Our purpose here is to use the statistical-thermodynamic disloca-
tion theory developed in Refs. [1–7] to analyze the classic observations
of adiabatic shear banding (ASB) by Marchand and Duffy (MD) [8].
The latter authors made stress-strain measurements over a range of
substantially different temperatures and shear rates using thin steel
tubes bonded to torsional Kolsky bars. They observed ASB formation
at high shear rates and low temperatures. Specifically, they observed
abrupt stress drops, large increases of temperature in emerging nar-
row bands, and strong strain localization leading to crack formation
and failure. (See also Ref. [9] for a review of the existing literature on
this topic.) Our challenge is to predict those behaviors quantitatively
using a realistic physics-based theory.

Our new ability to interpret data of the kind published in MD [8]
is related to the fact that the statistical thermodynamic dislocation
theory is able to predict nonequilibrium behaviors that previously
had been beyond the reach of conventional phenomenological meth-
ods in this field. These behaviors include strain hardening [1,2],
steady-state stresses over exceedingly wide ranges of strain rates [1],
Hall-Petch effects [5], thermal softening during deformation [6],
yielding transitions between elastic and plastic responses [3,5],
and – most importantly for present purposes – the competition
between thermal and mechanical effects that produces shear band-
ing instabilities [4,7].
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By definition, “adiabatic” shear banding is a thermal effect. It hap-
pens when the heat generated at a hot spot is unable to flow away
from that spot as fast as new heat is being generated there, thus ini-
tiating a runaway instability. These thermal effects were missing in
the early versions of the thermodynamic dislocation theory, which
were based on data for copper as shown, for example, in Refs. [10,11].
There, the thermal conductivity is large enough that heat genera-
tion can be neglected and no appreciable thermal softening occurs.
However, typical stress-strain curves such as the ones shown for
aluminum and steel in Refs. [12,13] and discussed by us in Ref. [6]
exhibit thermal softening at large strain rates even without under-
going ASB. When ASB does occur, temperatures within the band may
increase by hundreds of degrees or more, and thermal forces become
one of the principal driving mechanisms. In order to demonstrate
the possibility of ASB formation theoretically, one of us [3,4] stud-
ied an artificial model with all the same mechanical parameters as
copper but with substantially reduced thermal conductivity and an
enhanced thermal conversion coefficient. We will have to be more
realistic than this in our analyses of the MD data. Specifically, we will
need to deduce from the MD data a longer list of both mechanical and
thermal parameters for their steel alloy than was needed for copper.

The thermodynamic dislocation theory is based on two uncon-
ventional hypotheses. The first of these is that, under nonequilibrium
conditions, the atomically slow configurational degrees of freedom of
deforming solids are characterized by an effective disorder temper-
ature that differs from the ordinary kinetic-vibrational temperature.
Both of these temperatures are thermodynamically well defined
variables whose equations of motion determine the irreversible
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behaviors of these systems. The second hypothesis is that entan-
glement of dislocations is the overwhelmingly dominant cause of
resistance to deformation in the materials considered here. It is these
two hypotheses that have led to the successfully predictive theory
mentioned above. A recent, more complete discussion of this theory
can be found in Ref. [7].

As in Ref. [4], we consider a strip of polycrystalline material, of
width 2W, driven in simple shear in the x direction at constant veloc-
ities Vx and −Vx at its top and bottom edges respectively. The total
strain rate is Vx/W ≡ Q/t0, where t0 ≈ 10−12 s is an arbitrarily
chosen microscopic time scale that we use in order to express
rates as meaningful dimensionless quantities. In order to observe
shear localization, we look at spatial variations in the y direction,
perpendicular to the x axis.

The local, elastic plus plastic strain rate is ė( y) = dvx/dy, where
vx is the material velocity in the x direction. This motion is driven
by a time-dependent, spatially uniform, shear stress s . Because the
overall shear rate is constant, we can replace the time t by the accu-
mulated total shear strain, say e, so that t0∂/∂t → Q ∂/∂e. Then
we denote the dimensionless, y-dependent plastic strain rate by
q( y, e) ≡ t0 ėpl( y, e).

The internal state variables that describe this system are the areal
density of dislocations q, the effective temperature w̃ (in units of
a characteristic dislocation energy eD), and the ordinary tempera-
ture h̃ (in units of the pinning temperature TP = eP/kB, where eP is
the pinning energy defined below). We define q ≡ q̃/a2, where a is
the average spacing between dislocations in the limit of infinite w̃,
which is a length of the order of tens of atomic spacings. Note that
a/

√
q̃ is the average distance between dislocations. All three of these

dimensionless quantities q̃, w̃, and h̃ are functions of y and e.
The central, dislocation-specific ingredient of this analysis is the

thermally activated depinning formula for the dimensionless plastic
strain rate q as a function of the stress magnitude s:

q(e) =
√
q̃ exp

[
− 1

h̃
e−s/sT (q̃)

]
. (1)

This is an Orowan relation of the form q = q b v t0, where b is
the length of the Burgers vector, and v is the speed of the disloca-
tions given by the distance between them multiplied by the rate at
which they are depinned from each other. Without loss of generality,
we have absorbed the ratio b/a into the definition of t0. The depin-
ning rate is approximated here by the activation term in Eq. (1), in
which the energy barrier eP (implicit in the scaling of h̃) is reduced
by the stress dependent factor e−s/sT (q̃). Here, sT (q̃) = lT

√
q̃ is

the Taylor stress, given by the shear modulus l multiplied by the
strain (b′/a)

√
q̃, that is, by the ratio of a small depinning length b′

to the distance between dislocations. Then define lT ≡ r l, where
the dimensionless ratio r = b′/a is a system-specific geometrical
constant.

The pinning energy eP is large, of the order of electron volts, so
that h̃ is very small. As a result, q(e) is an extremely rapidly vary-
ing function of s and h̃. This strongly nonlinear behavior is the key
to understanding yielding transitions and shear banding as well as
many other important features of polycrystalline plasticity. In what
follows, we shall see that this temperature sensitivity of the plastic
strain rate is the key to understanding important aspects of the ther-
momechanical behavior. Moreover, the extremely slow variation of
the flow stress as a function of strain rate discussed in Refs. [1,7] is
the converse of the extremely rapid variation of q as a function of s
in Eq. (1). This can be seen by rewriting Eq. (1) in the form

s = sT (q̃) m
(
h̃, q̃, q

)
; m

(
h̃, q̃, q

)
≡ ln

(
1

h̃

)
− ln

[
ln

(√
q̃

q

)]
. (2)

Thus, the flow stress is equal to the Taylor stress multiplied
by a slowly varying function of temperature, dislocation density
and strain rate, consistent with a wide range of experimental
observations.

The equation of motion for the scaled dislocation density q̃

describes energy flow. It says that some fraction of the power deliv-
ered to the system by external driving is converted into the energy of
dislocations, and that that energy is dissipated according to a detailed-
balance analysis involving the effective temperature w̃. This equation
is:

∂ q̃

∂e
= j1

s q

m
(
h̃, q̃, Q

)2
lT Q

[
1 − q̃

q̃ss(w̃)

]
, (3)

where q̃ss(w̃) = e−1/w̃ is the steady-state value of q̃ at given w̃.
The coefficient j1 is an energy conversion factor that, according to
arguments presented in Refs. [1,4] and [7], should be approximately
independent of both strain rate and temperature for the situations
considered here. This equation plays the role of the phenomenologi-
cal “storage-recovery” equation [10]. (See Ref. [1] for a discussion of
the inadequacies of the latter equation.) Here, however, Eq. (3) has
been derived directly from first principles with only a single system-
specific parameterj1 that needs to be obtained from strain-hardening
data. Note that the scaled effective temperature w̃ plays an absolutely
essential role in it.

The equation of motion for w̃ is a statement of the first law of
thermodynamics for the configurational subsystem:

∂ w̃

∂e
= j2

s q
lT Q

(
1 − w̃

w̃0

)
. (4)

Here, w̃0 is the steady-state value of w̃ for strain rates apprecia-
bly smaller than inverse atomic relaxation times, i.e. much smaller
than t−1

0 . The dimensionless factor j2 is inversely proportional to the
effective specific heat ce f f. Unlike j1, there is no reason to believe
that j2 is a rate-independent constant. In Ref. [5], j2 for copper was
found to decrease from 17 to 12 when the strain rate increased by
a factor of 106. Here, we shall assume for simplicity that j2 is a
constant. Again, we emphasize that there is nothing phenomenolog-
ical about Eq. (4); it has been derived directly from basic principles
of thermodynamics. Only the parameter j2 needs to be determined
from experiment. Even w̃0 can be obtained to a good approximation
from statistical arguments as shown in Refs. [1,7].

The equation of motion for the scaled, ordinary temperature h̃ is
the usual thermal diffusion equation with a source term proportional
to the input power. We assume that, of the three state variables, only
h̃ diffuses in the spatial dimension y. Thus,

∂ h̃

∂e
= K

(
h̃
) s q

Q
+

K1

Q
∂2h̃

∂y2
− K2

Q

(
h̃ − h̃0

)
. (5)

Here, K(h̃) = b/(TP cp qd) is a thermal energy conversion factor,
while K1 = k1t0/(cpqd) characterizes heat conduction in the axial
direction of the tube. cp is the thermal heat capacity per unit mass,
qd is the mass density, 0 < b < 1 is a dimensionless constant known
as the Taylor-Quinney factor, and k1 is the thermal conductivity.
K2 is a thermal transport coefficient that controls how rapidly the
system relaxes toward the ambient temperature T0, that is, h̃ → h̃0 =
T0/TP . As discussed in Ref. [6], K(h̃) may be non-trivially temperature
dependent. In the range of temperature under consideration, we take
it to be

K
(
h̃
)

= c0 + c1 e−c2/(TP h̃). (6)



Download English Version:

https://daneshyari.com/en/article/7910943

Download Persian Version:

https://daneshyari.com/article/7910943

Daneshyari.com

https://daneshyari.com/en/article/7910943
https://daneshyari.com/article/7910943
https://daneshyari.com

