Contents lists available at ScienceDirect

Scripta Materialia

journal homepage: www.elsevier.com/locate/scriptamat

Understanding slow-growing alumina scale mediated by reactive elements: Perspective via local metal-oxygen bonding strength

Shun-Li Shang^{a,*}, Yi Wang^a, Brian Gleeson^b, Zi-Kui Liu^a

^a Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, United States ^b Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, United States

ARTICLE INFO

Article history: Received 11 February 2018 Received in revised form 28 February 2018 Accepted 1 March 2018 Available online xxxx

Keywords: Alumina scale Reactive elements Oxides Phonon First principles calculations

ABSTRACT

Interatomic bonding strength/energy can be quantified by stretching force constants (SFC) after first-principles phonon calculations. Here, we show that the slow-growing alumina (α -Al₂O₃) scale mediated by reactive elements (REs) can be understood via the strong RE—O bonding energy from the present SFC model applied to oxides (Al₂O₃, Cr₂O₃, Ti₂O₃, ZrO₂, HfO₂, Y₂O₃, and La₂O₃), Al₃M, and Al₄₇MO₇₂ (M = Cr, Ti, Zr, Hf, Y, and La). The present model indicates that Hf is the best RE in retarding alumina scale growth, agreeing with the analyses from bulk modulus, melting point, and enthalpy of formation of oxides, and experimental observations.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

A dense, continuous, slow-growing, relatively chemically inert and adherent oxide scale is essential for protecting an underlying alloy from oxidation and hot corrosion [1,2]. For example, the thermally grown oxide (TGO) layer within the thermal barrier coating (TBC) system, commonly alumina (α -Al₂O₃), forms in the high-temperature environments of aircraft and industrial gas-turbine engines [3,4]. The Al₂O₃ scale is believed to grow predominantly by oxygen (O) inward diffusion, combined with non-trivial aluminum (Al) outward diffusion, on alumina grain-boundaries [1,5]. Adding reactive elements (REs) such as the present focus of Ti, Zr, Hf, Y, and La, has been found to significantly reduce the growth rate of Al₂O₃ scale [1,5–7]. In particular, Hf shows exceptional effectiveness in comparison with such as Y and Zr [8,9].

The reason why REs are so effective in improving scale performance is still unclear [7], albeit numerous mechanisms have been proposed. Cho et al. [10] suggested a "site-blocking" effect on diffusion by oversized segregant cations within the TGO grain-boundaries, but this hypothesis fails to explain the fact that the smaller size Hf has a more beneficial effect than the larger size Y and Zr [8]. Heuer et al. [5,11] proposed that the segregation of REs on alumina grain-boundaries could reduce Al ionization by modifying the grain-boundary donor and acceptor states, rather than any blocking of diffusion pathways. They suggested that the grain-boundary diffusion occurs via charged jogs instead of the jumping of isolated point defects in the high-angle grainboundaries, indicating the connection of production/annihilation of

* Corresponding author.

E-mail address: sus26@psu.edu (S.-L. Shang).

https://doi.org/10.1016/j.scriptamat.2018.03.002 1359-6462/© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. the charged Al and O vacancies, and in turn, their diffusivities on grain-boundaries. In a different paper, the present authors [8] recently showed that the metal-oxygen (M—O) bonding strength can be used to understand the effectiveness of REs in retarding the rate of alumina-scale growth. This understanding considers that the diffusion of oxygen involves the breaking of M—O bonds and that the diffusion of aluminum, in turn, relies on oxygen diffusion due to charge-compensation reactions [5,11].

Qualitative M—O bonding strength can be estimated by global properties of oxides due to the dominated M—O bonding in oxides, for example, bulk modulus, melting point, and enthalpy of formation [8]. Due to the local nature of interatomic bonding, quantitative bonding strength between two atoms of interest can be evaluated by force constants, i.e., the Hessian matrix of second derivatives of energy with respect to displacement. Force constants allow quantitative analyses of the extent of interaction or bonding between atomic pairs [12,13]. A large and positive force constant suggests strong interaction (bonding), while a negative force constant indicates that the atomic pairs tend to separate from each other. A zero force constant implies that the two atoms do not interact under the given atomic environments. We believe that force constants are more suitable to characterize bonding strength between atomic pairs in comparison with such as electronegativity which describe the tendency of an atom to attract electrons towards itself.

Force constants between every two atoms (separated by vector **u**) can be represented by a 3×3 matrix (denoted by **F**) with nine components. It is more convenient to quantify interatomic bonding using only the bending force constant (BFC) and especially the major contribution

Regular article

of the stretching force constant (SFC or f_s for short) [12,13]. Both BFC and SFC can be calculated using the projections of force constants **F** perpendicular and parallel to **u**, respectively. For instance,

$$f_{\rm s} = \hat{\mathbf{u}} \cdot \mathbf{F} \cdot \hat{\mathbf{u}}^{\rm T} \tag{1}$$

where $\hat{\mathbf{u}}$ is a 1 × 3 unit vector of \mathbf{u} and the superscript T indicates transposition. SFC and the associated bond length between every two atoms can be used to probe the origin of alumina-scale growth affected by the reactive elements such as the present focus: Ti, Zr, Hf, Y and La. In addition, alloying constituent Cr is also studied herein since it is another key element to form a protective α -Cr₂O₃ scale, which is isostructural with α -Al₂O₃ (i.e., corundum, hexagonal close-packed).

Metal-oxygen (M—O) and metal-aluminum (M—Al) force constants in the present work are calculated based on the stable oxides (α -Al₂O₃, α -Cr₂O₃, Ti₂O₃, ZrO₂, HfO₂, Y₂O₃, and La₂O₃), dilute M in alumina (i.e., Al₄₇MO₇₂, see Supplementary Fig. S1), and Al₃M compounds (Al₃Cr, Al₃Ti, Al₃Zr, Al₃Hf, Al₃Y, and Al₃La); see Supplementary Table S1 for details. It is noted that force constants as a function of bond length are usually transferable across different and especially similar atomic environments [14], making the present analysis reasonable.

All force constants in the present work are calculated using the Vienna Ab initio Simulation Package (VASP) [15]. The ion-electron interaction is described by the projector augmented wave (PAW) method [16]. The exchange-correlation (X-C) energy functional is mainly described by the improved generalized gradient approximation for densely packed solids and their surfaces, i.e., PBEsol [17]. During VASP calculations, the plane wave cutoff energies are set at 500 eV for oxides (including Al₄₇MO₇₂) and 350 eV for Al₃M, and the spin polarization is included for all Cr-containing calculations. The selected valenceelectron configurations for each element are the same as those used by Materials Project [18,19]. More details of first-principles calculations are given in Supplementary Table S1, including structural details, supercell sizes, and k-point meshes for sampling the Brillouin zone for each oxide, Al₄₇MO₇₂, or Al₃M. The Supplementary Material also shows additional results from first-principles calculations, including (i) equilibrium properties (volume V_0 , bulk modulus B_0 , and its pressure derivative B') fitted by a four-parameter Birch-Murnaghan equation of state (EOS) [20], see Supplementary Table S1; (ii) a comparison of the calculated and experimental V_0 and B_0 for oxides, see Supplementary Fig. S2; and (iii) phonon densities of states for oxides and Al₃M predicted by the YPHON code [21], see Supplementary Fig. S3. These properties are not the present focus but can be used to judge the quality of the present first-principles calculations.

Fig. 1a shows the calculated SFCs at 0 K for various metal-oxygen (M—O) pairs based on the stable oxides and the dilute alloying elements M in α -Al₂O₃ (i.e., Al₄₇MO₇₂). Note that the key SFC is the largest SFC (denoted by f_{s0}) with usually the shortest bond length r_0 , for example, $f_{s0} = 5.62 \text{ eV}/\text{Å}^2$ with $r_0 = 1.86 \text{ Å}$ for the Al—O bond in bulk Al₂O₃ (see the black and filled triangle on the left side of Fig. 1a). It can be seen that all the r_0 values of RE—O (RE = Ti, Zr, Hf, Y, and La) and Cr—O are longer than those of Al—O based on the oxides and Al₄₇MO₇₂ (i.e., $r_0 =$ 1.95–2.35 Å versus $r_0 = 1.80-1.86$ Å). However, the largest SFC (i.e., f_{s0} with length r_0) of each RE—O or Cr—O in oxide case (see the filled symbols) is comparable with and even higher than the f_{s0} of Al—O, with the largest f_{s0} value being for the Hf—O bond followed by those of Cr—O and Zr—O. When REs or Cr dissolve in α -Al₂O₃, the largest SFCs with the shortest M—O bonds (viz., f_{s0} with length r_0) increase dramatically due mainly to the decrease of M—O bond lengths in α -Al₂O₃, especially for the Y—O and La—O bonds with $f_{s0} = 3-4 \text{ eV}/\text{Å}^2$ increased to 13–14 eV/Å²; see the symbols connected by the dotted lines in Fig. 1a. In addition, the increased f_{s0} values of M—O bonds in Al₄₇MO₇₂ (here, $M \neq Al$) are more significant than the corresponding increase of f_{s0} of Al-O; see the open symbols connected by the dot-dashed lines in Fig. 1a. It should be noted that Cr may be expected to dissolve in Al₂O₃ instead of segregated to grain-boundaries [1]. However, the solubility

Fig. 1. Calculated stretching force constants (SFCs) at 0 K by PBEsol between the metaloxygen (M—O) (a) and metal-aluminum (M—Al) (b) atoms based on oxides, Al₃M, and the dilute M-containing α -Al₂O₃ (Al₄₇MO₇₂). The dot lines connect the maximal M—O (or M—Al) SFCs in oxides (or Al₃M) and Al₄₇MO₇₂. The dot-dashed lines connect the maximal M—O (or M—Al) and Al–O (or Al–Al) SFCs in Al₄₇MO₇₂.

of REs in Al₂O₃ is very low, for example, the HfO₂ doping level was found to be 100–200 ppm in Al₂O₃ at 1400 °C [22]. In the real system, the REs are mainly segregated on the Al₂O₃ grain boundaries [1,5], where diffusion would mostly take place. In these lower-symmetry environments, the RE—O (here, RE \neq Cr) bonds can probably relax close to their equilibrium lengths as shown in the RE-containing concentrated oxides. Correspondingly, the SFCs of these RE—O bond lengths are expected to be similar to those in the RE-containing concentrated oxides, but these SFCs may change up to the cases in Al₄₇MO₇₂ when REs dissolve in Al₂O₃, see Fig. 1a.

The variations of bond lengths and SFCs of M—Al in Al₃M and Al₄₇MO₇₂ are similar to the M—O case in Fig. 1a; see Fig. 1b. However, the Al-M SFCs (here, M \neq Al) in Fig. 1b are much lower than the Al—Al SFCs in α -Al₂O₃, for example, $f_{s0} = 2-3 \text{ eV}/\text{Å}^2$ for Al—M versus $f_{s0} = 5.5 \text{ eV}/\text{Å}^2$ for Al—Al; see the symbols connected by the dotted lines in Fig. 1b. The M—Al bonding strengths in Fig. 1b are hence ignored during the analyses of alumina scale growth. Force constants in Fig. 1 suggest that the REs influence the diffusion of aluminum, on the grain-boundaries of alumina via a mechanism such as the charge compensation reactions to generated the Al/O charged vacancies proposed by Heuer et al. [5,11].

The growth of alumina scale relates to the diffusion of oxygen through the breaking of M—O bonds by exceeding the diffusion activation energy Q of oxygen. The Q values can be estimated via the global properties of oxides [8,23], since the properties of oxides are mainly controlled by the M—O bonds (see such as Supplementary Fig. S4):

$$Q \propto B_0 V_0 \propto RT_m \propto -\Delta H_{298} \tag{2}$$

where the bulk modulus B_0 and volume V_0 for the oxides of interest are shown in Supplementary Table S1, R is the gas constant, T_m the melting point, and ΔH_{298} the enthalpy of formation at 298 K. The introduction of Eq. (2) considers the facts that (i) the M—O bonds with shorter bond Download English Version:

https://daneshyari.com/en/article/7910994

Download Persian Version:

https://daneshyari.com/article/7910994

Daneshyari.com