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a  b  s  t  r  a  c  t

The  sliding  of  a heavy  bead  threaded  onto  a thin circular  hoop  rotating  at a constant  angular  velocity
about  an  inclined  axis  located  in its  plane  and  passing  through  its centre  is considered.  A  dry  friction
force  acts  between  the  bead  and  the  hoop.  The  sets  of  the  non-isolated  positions  of  relative  equilibrium
of  the  bead  on  the  hoop  are  found  and their  dependence  on  the  parameters  of  the  problem  is investigated.
The  results  are  presented  in the  form  of  bifurcation  diagrams.
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Problems similar to that considered here arise in the dynamics of mechanical systems with rotating parts performing different operations
such as the mixing, grinding, drying, etc. of diverse substances (see Refs 1, 2, for example) as well as self-compensating systems.3

In the one-dimensional case, the study of the dynamics of such systems probably dates back to Mandelshtam’s papers,4 where he refers
to different versions of a Froud pendulum. As a rule, it is assumed in studying a Froud pendulum that the resisting force is independent of
the normal reaction. However, generally speaking, this is not so in the case of the motion of a system with dry friction. General methods
have been developed (Refs 5–7 etc.) for studying limiting cycles of a system of the Froud pendulum type under quite general assumptions.

The existence of non-isolated sets of equilibria of systems with friction has been known for a long time (for example, see Refs 8, 9).
The investigation of the stability of non-isolated equilibria in such systems in rigid-body mechanics probably originates in Krementulo’s
papers.10,11 A general theory of the stability of the equilibria in systems with dry friction has been developed.12 Methods, based on the
general theory of systems with discontinuous right-hand sides, have been proposed for studying the stability of such equilibria.13–15

Bifurcations of the equilibria in systems with friction have been studied as well as bifurcations of the phase portraits of such systems.16–18

The bifurcation sets in the problem of the motion of a heavy bead on a circular hoop rotating about its own vertical diameter have been
considered19 and, in a similar problem, for the case when the axis of rotation is vertical but does not coincide with the axis of symmetry of
the hoop.20 Unlike in these problems, the case of an inclined axis of rotation of the hoop passing through its centre is considered below.

1. Statement of the problem and equations of motion in redundant coordinates

The motion of a heavy particle, that is, a bead P of mass m threaded onto a hoop in the form of a circle of radius � with its centre at the
point O, is considered. The hoop rotates with constant angular velocity � about an inclined axis lying in its plane and passing through its
centre. The angle of inclination of the axis from the vertical is assumed to be constant and equal to �. A dry friction force with a coefficient
of friction � acts between the bead and the hoop.

The motion of the bead can be described using Lagrange’s equations of the first kind in a moving coordinate system (MCS) associated
with the hoop. Suppose Oxyz is a right-handed triplet with origin at the centre of the hoop, the z axis of which is directed along its axis of
rotation, the y axis is located in the plane of the hoop and the x axis is perpendicular to this plane (see Fig. 1).

In the MCS, the bead position P is given by the coordinates (x, y, z) and the constraints restricting its motion are defined by the relations

(1.1)
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Fig. 1.

Suppose �r = (ẋ, ẏ, ż)  is the bead velocity in the MCS, �r = (�r, �r)1/2, and the transfer velocity �e = (− �y, �x, 0). The kinetic energy of
the system, free from constraints, and the potential energy in the MSC  are given by the relations

where g is the gravitational acceleration. Lagrange’s equations

(1.2)

where

(1.3)

and F = (0, Fy, Fz) is the friction force, can be represented in the form

Here a is the acceleration of the bead in the MSC, FC and Fc are the Coriolis force and the centrifugal force, FN is the gravitational force
and N is the normal reaction of the hoop. The unit vectors

respectively define the tangent, internal normal and binormal to the circle at the point P. The expressions for the forces have the form

and, in the case of slipping �r /= 0

(1.4)

We introduce dimensionless parameters using the relations

(1.5)
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