Contents lists available at ScienceDirect

Scripta Materialia

journal homepage: www.elsevier.com/locate/scriptamat

Regular article Grain size effect on radiation tolerance of nanocrystalline Mo

G.M. Cheng^a, W.Z. Xu^a, Y.Q. Wang^b, A. Misra^c, Y.T. Zhu^{a,*}

^a Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA

^b Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

^c Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA

ARTICLE INFO

ABSTRACT

Article history: Received 28 March 2016 Received in revised form 30 May 2016 Accepted 8 June 2016 Available online xxxx

Keywords: Radiation damage Body-centered cubic (bcc) Nanocrystalline Grain size effect Magnetron sputtering We report a significant grain size effect on radiation tolerance of nanocrystalline Mo under He ion irradiation. Irradiation-induced dislocation loops mainly contribute to the irradiation-induced hardening of Mo films with grain size of >90 nm, while few such loops in those with grain size of <90 nm. The hardness increment after irradiation decreases with decreasing the grain size, and approaches zero at the grain size of 25 nm. Also, the size and the density of irradiation-induced He bubbles decrease as the grain size decreases. This observation provides direct evidence that nanocrystalline body-centered-cubic metals have greater radiation tolerance than their ultra-fine-grained or coarse-grained counterparts.

Published by Elsevier Ltd.

Radiation damage is one of the critical issues for developing advanced materials used in next generation nuclear plants [1–8] and spacecrafts [9]. Hardening, swelling, embrittlement and creep are some of the critical issues associated with radiation damage. Irradiation can induce interstitials, vacancies or He bubbles in microstructure, which will further agglomerate to form loops, interstitial or vacancy clusters and voids in materials [10,11]. Formation of voids will lead to swelling and embrittlement, which are the main cause of material failure under irradiation environment [12]. Therefore, how to control the generation of irradiation-induced defects and mitigate the negative effects of He bubbles is the key to design advanced radiation tolerant materials with a balance of mechanical and thermal properties [2,13].

Body-centered cubic (bcc) metals and alloys have attracted much attention in the past decade due to their reduced-activation under irradiation environment [14–18]. The studies on the oxide-dispersion strengthened (ODS) ferrite steels [19–22] have showed great radiation tolerance since dispersed nanoparticles in the matrix increase the volume fraction of the interfaces which can act as sinks for irradiation-induced defects, especially for He bubbles.

Similarly, nanocrystalline (NC) materials exhibit great potential for such applications because a large fraction of grain and interphase boundaries can act as effective sinks for irradiation-induced vacancies and bubbles [2,6,23,24]. Refining the grains of materials into nanometer size can significantly alter the physical, chemical and mechanical behaviors of the materials [25–31]. Previous reports [32–35] on fcc/bcc nanolayered composites have showed extreme tolerance to He bubbles,

* Corresponding author.

E-mail address: ytzhu@ncsu.edu (Y.T. Zhu).

which are prone to segregate at interphase boundaries. Bulk NC metals have also displayed extraordinary radiation healing behavior due to grain boundary (GB) accommodation of defects [36–38].

Although there are many reports about the radiation damage on NC metals and alloys, it remains elusive about how the change of grain size affects the radiation tolerance. To explore this issue, here we investigate the effect of grain size on the mechanical properties and the microstructure evolution of NC bcc metals before and after He ion irradiation, using Mo as a model material.

Mo films with thickness of at least 1.5 µm were synthesized on silicon (100) substrates using magnetron sputtering. The deposition rate was varied in order to control the average grain size. Mo films with average grain sizes ranging from 25 to 455 nm and coarse-grained (CG) Mo foil (listed in Table 1) were irradiated together at room temperature, using 200 keV He ions with a total fluence of 1.4×10^{17} ions/cm². The peak damage was ~4 dpa (displacement per atom) and the He concentration ~1.9% (see details in the supplementary materials). The indentation hardness and modulus of Mo samples before and after He ion irradiation were measured based on an average value of at least 9 indents at each load from HYSITRON TI900 TriboIndenter with a Berkovich tip (tip diameter, 45 nm). The maximum indentation depth was 150 nm for all thin film specimens and 250 nm for bulk specimen. Microstructures of Mo samples before and after irradiation were examined by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Both plane-view (peeling off) and cross-section (wedge-shaped) samples were ion-milled at -70 °C, with low energy (3.5 keV) and low angle (<4°). TEM and high-resolution TEM (HRTEM) observations were carried out using a JEOL 2010F microscope operating at 200 kV.

CrossMark

Average grain size (from plane-view) corresponding to the different samples from Mo thin films prepared by magnetron sputtering and asreceived Mo foil.

Sample type	Average grain size (nm)
Mo6	25
Mo5	44
Mo4	68
Mo3	90
Mo2	185
Mo1	455
Mo0	3900

Series of Mo films with different average grain size were prepared, and the grain size distribution was uniform based on both plane-view and cross-sectional TEM observations. Fig. 1 shows the morphologies of one of the typical NC Mo films. The thickness of the Mo film was measured to be 1.5 µm from the cross-sectional view in Fig. 1d obtained by SEM. From the plane-view bright-field and dark-field TEM images in Fig. 1b and c, the distribution of the grain size is uniform (see the plot in the inset of Fig. 1b), and the average grain size is 44 nm, taken 500 grains into account. The average grain size along the growth direction is 100 nm, as shown in Fig. 1e and f.

The hardness deviation of bcc Mo samples before and after He ion irradiation is presented in Fig. 2a as a function of the grain size, where the grain size is the average value of each Mo sample (Table 1). The reduction of grain size introduces strong hardening in NC Mo thin films before He ion irradiation (marked by open square in Fig. 2a), which is similar to the previous report [30]. The hardness of Mo samples after irradiation continuously increases with decreasing the grain size. And the hardness values of irradiated Mo samples (marked by open circle in Fig. 2a) are larger than those of their unirradiated counterparts. It indicates that there is additional irradiation-induced hardening due to the irradiation-induced defects, besides of the hardening from the reduction of grain size. Note that there is no obvious change of grain size or residue stress of the Mo samples before and after He ion irradiation based on the XRD analysis. It can be seen from Fig. 2a that dramatic irradiation-induced hardening is in the irradiated samples with grain size of >90 nm. Especially in CG Mo, the hardness of irradiated sample is increased by 4.5 GPa and reaches to 7.2 GPa, which means that a high density of defects is induced into the sample during He ion irradiation. However, the hardness increment ($\Delta H_{ir} = H_{irradiated} - H_{unirradiated}$) before and after irradiation decreases as the grain size decreases, shown in Fig. 2c (the hardness increment as a function of the grain size). The hardness increment has a dramatic decrease when the grain size is <90 nm, and is close to zero in NC Mo with a grain size of 25 nm. This is probably due to a remarkable reduction of irradiation-induced defects in them. Accordingly, the irradiation-induced hardening can be effectively reduced by decreasing the grain size.

Figs. 3 and 4 show the dominant irradiation-induced defects (He bubbles and dislocation loops) in irradiated NC and CG Mo with grain sizes of 44 nm (Mo5) and $3.9 \,\mu$ m (Mo0), respectively. It is clearly seen in Fig. 3a and c that both have a very high density of He bubbles, which is of the order of $10^{23}-10^{24} \, m^{-3}$ (the number of bubbles per unit volume), but the distribution of He bubbles is different as the grain size changes. The He bubbles tend to segregate to the GBs in irradiated NC Mo (Fig. 3a). Note that the two TEM images are under the same imaging conditions. The density of He bubbles in irradiated NC Mo is less than that in irradiated CG Mo based on the statistic data in Fig. 2b, and the average diameter of He bubbles in irradiated NC Mo (Mo5) is 0.6 nm, which is only half of that in irradiated CG Mo (Mo0) with a value of 1.2 nm, shown in Fig. 3b and d.

Furthermore, there is a high density of dislocation loops in irradiated CG Mo ($\sim 10^{24}$ m⁻³, the number of loops per unit volume), but less dislocation loops (10^{22} m⁻³) in irradiated NC Mo, shown in Fig. 2d. Fig. 4 shows TEM and HRTEM images of the irradiation-induced dislocation loops in NC (Mo5) and CG (Mo0) Mo after He ion irradiation. Details of loop characterization (type, Burgers vector, etc.) in irradiated bcc bulk metals can be referred to Refs [39–41]. The irradiation-induced dislocation loops show clear image contrast in irradiated CG Mo (Fig. 4c) but not in irradiated NC Mo (Fig. 4a). A magnified TEM image of the dislocation loops in irradiated CG Mo is shown in the inset in Fig. 4c. And the edge-on interstitial loops in irradiated NC and CG Mo are marked in the HRTEM images in Fig. 4b (the inset) and d, respectively. Note that there is much less dislocation loops ($<10^{20}$ m⁻³) in all unirradiated Mo samples (see Fig. S3 in the supplementary materials). Moreover,

Fig. 1. SEM (a, d), bright-field TEM (b, e) and dark-field TEM (c, f) images of typical NC Mo film prepared by magnetron sputtering. (a–c) from plane-view; (d–f) from cross-sectional view. The inset in (b) shows the distribution of grain size based on 500 grains. The average grain size is 44 nm. The inset in (c) is the corresponding SAED pattern.

Download English Version:

https://daneshyari.com/en/article/7911556

Download Persian Version:

https://daneshyari.com/article/7911556

Daneshyari.com