Contents lists available at ScienceDirect

Scripta Materialia

journal homepage: <www.elsevier.com/locate/scriptamat>

Correlations between conductivity, electroluminescence and flash sintering

K. Naik, S.K. Jha, R. Raj $*$

Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, United States

article info abstract

Article history: Received 4 January 2016 Received in revised form 26 February 2016 Accepted 1 March 2016 Available online xxxx

Flash sintering Potassium niobate Strontium niobate Electroluminescence Insulator to metal transition Interphase interfaces

Flash experiments with single phase SrTiO₃, and two-phase composites of SrTiO₃ containing 2.5–20 vol% of KNbO₃, reveal remarkably different outcomes. While all compositions show the classical signature of the flash, that is, a sudden increase in conductivity, and electroluminescence, only the pure $SrTiO₃$ specimen sinters fully. The composites show only some densification. The results are interpreted in terms of the nature of the interphase grain boundaries, which are expected to be "metallic". They further lead to an understanding of whether flash sintering originates primarily at grain boundaries or within the grain matrix. Element of the state of the community at grain boundaries or within the grain hatmx.
Electronic Capacity Capacity
Electronic Capacity Capacit

Flash sintering was discovered in a quest to understand the role of electric fields in spark-plasma-sintering [\[1\]](#page--1-0). Simple experiments were devised: the electric field was applied directly to the specimen with a pair of electrodes, which was placed within a conventional furnace. The current flowing through the specimen, and the voltage expressed across it, were measured. Experiments with yttria stabilized zirconia revealed that although sintering was significantly enhanced at low applied fields, it occurred abruptly, as if in a flash, when the field was increased above a threshold value [\[1\].](#page--1-0)

These first experiments were carried out at constant heating rate. In the present work the furnace was held at a constant temperature and the field applied as a step function. After an incubation time the current rises abruptly indicating the onset of the flash [\[2\]](#page--1-0). The current flow through the specimen is then limited by switching the power supply from voltage to current control.

The flash is accompanied by electroluminescence in the visible range. These spectra are not consistent with black body radiation [\[3\]](#page--1-0).

One key question in flash sintering is whether the flash effect is exclusively a "grain boundary effect" [\[4\],](#page--1-0) or whether it is a grain matrix effect. The present work was motivated by reports in the literature that interfaces between a non-polar ceramic, like $SrTiO₃ (ST)$, and a polar ce-ramic, like KNbO₃ (KN), have metallic character [\[5,6\]](#page--1-0). Thus, flash experiments with these composites, where the grain boundaries are expected to have metal-like behavior were expected to provide insights into the role of interfaces in the flash effect.

and KNbO₃ (99.99% purity) obtained from Alfa Aesar. The ST powders had a particle size of 50–150 nm. The KN-ST composites were made by ball milling the powder mixtures in ethanol using zirconia balls, for 1 h. The powder-slurry was strained and dried overnight at 80 °C. A binder (Duramax B-1000) — 3 vol.% in ethanol, was mixed in with powder, and dried overnight at 80 °C. The dried powder was pulverized with mortar and pestle. Micrographs of the powder of KN-ST prepared in this way, and the as received powder of for ST are shown in [Fig. 1.](#page-1-0) Note that the ST powder is agglomerated. The ST powder was cold pressed into specimens without using the binder. The physical details of the experimental setup are described in [\[7\].](#page--1-0)

Experiments were carried out with powders of $SrTiO₃$ (99.99% purity),

Dog bone specimens with a gage length of 20 mm and a cross-section of \sim 1 mm \times 3.2 mm were pressed under a pressure of \sim 200 MPa. The relative green density of the specimens was measured geometrically. The values were 55% for ST, 56% for ST-2.5 vol% KN, 57% for ST-5 vol% KN, 57% for ST-10 vol% KN, and 58% for ST-20 vol% KN.

The specimens were suspended into a furnace, held at 800 °C, with platinum wires. The voltage was applied as a step function. The DC electric field was 600 V cm $^{-1}$, and the current limit was set at 12 mA mm $^{-2}$. Flash was signaled by a non-linear rise in conductivity that was followed by a constant state of flash under current control. The shrinkage along the length, and across the width of the specimen, was measured from photographs taken sequentially in time, as described in earlier papers [\[1,7\].](#page--1-0)

Results from five compositions are reported. They are single phase ST, and four mixed compositions: ST-2.5 vol% KN, ST-5 vol% KN, ST-10 vol% KN, and ST-20 vol% KN. The plots for power dissipation from

CrossMark

[⁎] Corresponding author.

Fig. 1. SEM micrographs of powders of ST (agglomerated) and 5 vol% KN in ST, after milling for 1 h. The powder was used as shown to press dog-bones for sintering experiments.

the start to the end of the test are shown in Fig. 2. Plots of longitudinal and transverse shrinkage are shown in Fig. 3.

The power dissipation plots, in Fig. 2, show the classical behavior where the onset of the flash is signaled by a steep rise in the conductivity after an incubation time [\[2,8\]](#page--1-0). Note that the flash initiates more easily in the composites, with a much shorter incubation time than for pure ST. Remarkably the incubation times for all composites are the same even though the compositions range widely from ST-2.5 vol% KN to ST-20 vol% KN.

The peak in the power density in Fig. 2, which separates voltage control from current control, is necessarily equal to the product of the field and the current limit, since $P_W = EJ$ where E is the field and J is the current density. Under voltage control the specific conductivity, σ, is related to the power density by $\sigma = P_W/E^2$. Thus the curves for P_W before the power peak, when the applied field is constant, also represent the change in conductivity. Under current control $\sigma = J^2/P_W$; the values of conductivity determined from this equation by inserting the measured values of P_W are given in [Table 1.](#page--1-0)Why the conductivity should have these particular values during the steady state of flash remains an open question.

During the steady state, P_W can be translated into fairly reliable values for the specimen temperature from a black body radiation model [\[9\]](#page--1-0). The model, setting the emissivity equal to 0.9, gives estimates of the specimen temperature which are quoted in [Table 1](#page--1-0). The temperature estimate varies by \pm 50 °C. Note that the sample finds its own equilibrium temperature under current control (if the temperature were to increase then the resistance would decrease and so would power dissipation causing the specimen to cool; if the temperature cools too far then the resistance

Fig. 2. Power density curves for the five specimens. Even small additions of KN to ST, just 2.5 vol%, has a significant influence on the incubation time, which then remain constant for high volume fractions of KN.

Fig. 3. Shrinkage in longitudinal and transverse directions during of ST and the KN-ST composites. While ST sinters to full density, only the 2.5 vol% KN specimen sinters to some extent, and high volume fractions not at all. Compared with the power density curves in Fig. 2 to note the sintering occurs close to the power peak during the transition from voltage to current control.

would increase and so would the power dissipation which would restore the steady state temperature).

It is well recognized that nearly all sintering occurs during the transition from voltage to current control, that is near the peak in the power density [\[2\]](#page--1-0). Still, as shown in Fig. 3, despite the power density peak being similar for all five compositions the extent of densification achieved during the flash varies. While ST sinters to nearly full density, the 5-KN to 20-KN specimens show little sintering, while the 2.5-KN sample sinters half way. Interestingly these differences are similarly reflected in the intensity of the electroluminescence spectra, shown in [Fig. 4](#page--1-0). The higher KN compositions have low intensities, while ST, which sinters fully, emits high intensity electroluminescence. The 2.5-KN sample, which sinters partly, emits with intermediate intensities. (All data were obtained with the spectrometer placed at the same distance from the sample so the data give the relative intensities of the intrinsic emissions.)

The starting point in this work was to explore whether metallic interfaces can instigate the flash effect. The premise was that composites made of polar and non-polar oxides, which are known to develop metallic interfaces, would flash more readily.¹ The results presented in Fig. 2 are consistent with this hypothesis.

We have published a model for the incubation time for flash sintering where embryos with a polar character nucleate within a non-polar matrix. The model assumes that the metallic interfaces that would form between the embryo and the matrix were expected to nucleate the flash [\[8\].](#page--1-0)

Download English Version:

<https://daneshyari.com/en/article/7911884>

Download Persian Version:

<https://daneshyari.com/article/7911884>

[Daneshyari.com](https://daneshyari.com)