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The capillary force drives the edges of solid thinfilms to retract. The distance afilmedgehas retracted over time is
usually fitted to a power law.However, experiments and numerical simulations suggest that edge retraction does
not follow a power-law. In this work, a simple geometric model for edge retraction is presented that reproduces
the retraction distance versus time scalings of simulations for both isotropic and highly-anisotropic films, and is
consistent with experiments. The earliest time at which a power-law fit becomes a reasonable approximation is
calculated as a function of substrate–film contact angle.
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Thin films are the fundamental building blocks for manymicro- and
nano-scale devices and systems. However, they are unstable against
capillary forces due to their high surface-area-to-volume ratio. Capillar-
ity (i.e., surface tension) drives a process in thin films known as solid-
state dewetting [1], which occurs in the solid state primarily via surface
self-diffusion, though other transport mechanisms are possible [2].

The main feature of dewetting is retraction of the film's edges and
the formation of thick “rims” of material along the retracting edges.
The rim volume primarily comes from the volume of film that has
been consumed by the retraction process [1,3]. Retraction is facilitated
by a mass flux from the receding triple line (the intersection of the
film/vapor, vapor/substrate, and substrate/film interfaces) towards the
advancing side of the rim [4]. The flux from the bulk film towards the
rim is extremely small, and may usually be neglected [5].

Brandon and Bradshaw developed a simple model for edge retrac-
tion that provides two important scaling laws [3]. First, the model pre-
dicts that the radius of a growing hole in a thin film will increase with
time to the 2/5 power. Second, it predicts that the height of the rim
will increase with time to the 1/5 power.

The B&B (Brandon and Bradshaw)model has twomajor limitations:
first, it was developed for a contact angle of 90° only, and second, the
cross-section of the rim was taken to be a semi-circle. Because of the
first assumption, the effect of film–substrate contact angle on the scal-
ing is unknown. The second assumption makes the model valid only

in the limit of long retraction times, when the rim is much taller than
thefilmheight. Other phenomena such as pinch-off [6,7] orfingering in-
stabilities [8,9,10] typically occur on thin film edges, which prevent the
system from reaching the long-time limit of edge retraction in many
cases.

Experiments do not agree with the scaling predicted by B&B [1]. For
single-crystal nickel thin films, the exponent in the best power-law fit
has been reported as 0.4 and 0.56 [11], and 0.38–0.43±0.1 [12], for vary-
ing crystallographic directions. For single-crystal silicon, the exponent is
reported to be 0.42–0.58 for different film thicknesses and orientations
[13], and has been fitted by an exponent varying between 1/2 and 2/5
[14].

Numerical simulations of edge retraction also show that the re-
traction distance does not follow a power law. Both isotropic and
fully-faceted films initially retract linearly in time, then the exponent
in the power law gradually decreases, approaching 2/5 in the long-
time limit [7,4]. Kinetic Monte-Carlo simulations give an initial re-
traction rate proportional to t1/2, and approaching t2/5 in the long-
time limit [14].

In this work, we identify the underlying physics describing edge
retraction which are consistent with experiments and numerical
simulations. We present an analytical model, based on Brandon
and Bradshaw's approach, which overcomes the limitations of the
original model. Our model captures the transition from linear retrac-
tion to 2/5 power-law behavior and offers a physical explanation for
this phenomenology. The retraction rate and earliest time for t2/5 re-
traction are also provided as a function of film–substrate contact
angle.
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The velocity of an isotropic surface evolving by capillary-driven sur-
face diffusion was given by Mullins as [2]

un ¼ B
∂2K
∂σ2

1

þ ∂2K
∂σ2

2

 !
; ð1Þ

whereB ¼ DsγΩ2ν
kT ,Ds is the surface self-diffusivity,γ is the surface energy,

Ω is the volume per atom, ν is the density of mobile surface atoms, k is
Boltzmann's constant, T is temperature, and K is the mean curvature of
the surface as a function of orthogonal arc length coordinates σ1 and
σ2. This equation can be made dimensionless to have the form

vn ¼ ∂2κ
∂s21

þ ∂2κ
∂s22

 !
; ð2Þ

where vn is the dimensionless velocity and vn=unH
4/B, H is the

film thickness, s1 and s2 are the dimensionless arc length coordinates,
si=σi/H, and κ is the dimensionless mean curvature, κ=HK.

The following five assumptions made in the B&B model are pre-
served in our model to simplify the rim geometry: i) The film is taken
to be isotropic. ii) The film edge profile is identical everywhere along
the triple line, so there is no dependence on the arc length coordinate
parallel to the triple line s2, and it can be ignored. iii) When the film is
cross-sectioned normal to the triple line, the rim profile is a circular
arc. iv) The film behind the rim has uniform thickness, i.e., there is no

valley ahead of the retracting rim. The discontinuity in slope where
the rim meets the film is artificial and is therefore ignored; and
v) There is no mass flow between the flat film and the rim.

To overcome the limitations of the original B&Bmodel, we introduce
two augmentations: we allow any contact angle, and perform a more
accurate treatment of the rim volume over time. While B&B take the
cross-section of the rim to be a semi-circle, here it is treated as a circle
that is cut along two perpendicular chords (see Fig. 1): the horizontal
cut ensures that the rim meets the substrate at the equilibrium contact
angle θ (which is no longer constrained to be 90°), and the vertical cut
ensures a flush match between the rim and bulk film, so that volume
is conserved (which was not the case in the original B&B model).

All lengths in this analysis are normalized to the film thickness H,
and time is normalized to H4B−1, so that all quantities are dimension-
less. The height of the rim, h, is related to the radius of curvature of
the rim, r, and the contact angle, θ, by

r ¼ h
1− cos θ

: ð3Þ

To compute the velocity of surface motion using Eq. (2), the second
derivative of curvature along the film profile is needed.We assume that
the curvature as a function of arc length is parabolic near the triple line,
i.e., we use a second-order accurate approximation of the curvature,
similar to B&B's and Danielson's approach [3,13]. In general, the second
derivative of a parabola, k(s), of best fit to three distinct points (si,ki) is

∂2k
∂s2

≈
2 s1k2 þ s2k3 þ s3k1−s1k3−s2k1−s3k2ð Þ

s1−s2ð Þ s2−s3ð Þ s3−s1ð Þ : ð4Þ

Three points are selected along the s coordinate, (si,ki)=(0,ks=0),
(Δs,ks=Δs), (2Δs,ks=2Δs), where Δs is taken to be the arc length from
the triple line to where the rim meets the bulk film,

Δs ¼ r θþ arcsin
xmax tð Þ−r sin θ

r

� �
; ð5Þ

and the value of xmax(t) is indicated in Fig. 1. Note thatΔs is not an infin-
itesimal quantity, and changes with time. The curvature at the triple
line, ks=0, is equal to the curvature of the rim, 1/r. At arc distance Δs
and 2Δs from the triple line, the curvature (ks=Δs and ks=2Δs) is that
of the flat film, 0. Substitution into Eq. (2) using Eqs. (3) and (5), and
projecting the normal motion into the plane of the substrate (i.e., divid-
ing by sinθ), yields

vretr ¼ cscθ cosθ−13

h3 θþ arcsin
1
h
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θ
2
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The rim height at a future time, h(t+dt), is computed using conser-
vation of mass within the rim. The old rim, with height h(t), will incor-
porate material from the flat film with a cross-sectional area df, as
illustrated in Fig. 1. The cross-sectional area of the rim is found by inte-
grating the curve that describes it from xmin to xmax,

rim profile xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2− r sin θþ xmin−xð Þ2

q
−r cos θ; ð7Þ

where xmin=0 at time t and xmin=vretrdt at time t+dt. The additional
volume in the rim where xbxmin if θN90∘ is also integrated and added.
The area of flat film that is incorporated into the rim, df, is simply
(xmax(t+dt)−xmax(t)) (the film thickness is 1).

The cross-sectional area of the film is conserved, giving the equation

rim area t þ dtð Þ−rimarea tð Þ−df ¼ 0: ð8Þ

Fig. 1. (a) The geometry assumed by Brandon and Bradshaw [3] treats the rim as a semi-
circle, with overlap between the film and rim, violating mass conservation. (b, c) The
cross-sectional profile of the edge of the film is shown at time = t (b), and at time =
t+dt (c). It is assumed that retraction proceeds at velocity v, which is a function of the
rim height h(t), for a short amount of time dt. The new film edge geometry can be found
by assuming that the new rim area (light shading in (c)) is the sum of the old rim area
plus the area df (light shading in (b)). The x-axis is drawn below the figures, and the posi-
tions used in the model are indicated. All length scales are normalized to the film thick-
ness, and the contact angle θ and arc length coordinate s are shown in (b).
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