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An original experimental approach is presented to automatically determine the average phase distribution
around damage sites in multi-phase materials. An objective measure is found to be the average intensity around
damage sites, calculated using many images. This method has the following benefits: no phase identification or
manual interventions are required, and statistical fluctuations and measurement noise are effectively averaged.
The method is demonstrated for dual-phase steel, revealing subtle unexpected differences in the morphology
surrounding damage in strongly and weakly banded microstructures.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-phase materials typically consist of multiple phases with
distinct mechanical and physical properties. Their fracture behavior
is only partially understood, as the morphology – often complex –
plays a crucial role (e.g. in multi-phase metals [1], concrete [2], and
geophysics [3]). Experimental approaches towards systematic char-
acterization of the microstructural morphology in damaged regions
are cumbersome, whereas a reliable methodology might yield new
insights and more accurate input for (macroscopic) damage models
[4–6].

Different statistical descriptors have been developed for arbi-
trary (microstructural) morphologies. Well known examples are
the two-point probability or auto-correlation function and the lineal
path function [7,8]. For an isolated inclusion phase (e.g. spherical
particles) additional descriptors have been developed that convey
more information, such as the two-point cluster function and the ra-
dial distribution function [9]. Almost all measures however require
explicit knowledge of the spatial distribution of phases. This knowl-
edge is difficult to obtain experimentally and requires extensive
manual processing as the contrast between the phases is often low
[10]. Furthermore, they are aimed at the quantification of the distri-
bution and/or size of a single phase, while a conditional probability

is needed to characterize the neighborhood of a phase (e.g. morphology
around damage).

In a recent numerical study, DeGeus et al. [11] characterized the spa-
tial correlation between damage and phase distribution by calculating
the average arrangement of phases around damage sites. Extending
this analysis to an experimental setting faces the problem that [11] con-
sidered equi-sized grains in the model, corresponding to a finite set of
discrete positions (distance measures) that coincide with the grains.
In reality the position is continuous (finely discretized experimentally
through digital images) and the grains are irregular in position and
shape. Furthermore the interpretation in [11] made use of the explicit
knowledge of the phases and damage as a function of the position, not
available experimentally.

This letter presents a methodology to quantify the conditional
spatial correlation between a uniquely identified feature (e.g. dam-
age) and its surrounding morphology directly from a micrograph,
without the need for an explicit description of the microstructure.
As a proof of principle the average arrangement of martensite and
ferrite around damage in a dual-phase steel microstructure is char-
acterized. It is well known that in commercial grades martensite
often presents a banded structure, which has a strong influence on
the damage [1]. Two different grades of steel are therefore compared
that evidence strongly and weakly banded martensite. Tensile tests
on these steel grades show that the weakly banded microstructure
has a lower fracture strain, which is in disagreement with the com-
mon understanding. The proposed analysis provides novel insights
into this topic.
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2. Technique

The spatial correlation analysis1 is discussed in detail in this section,
using an artificial example for which the average distribution of two
phases around damage sites is quantified based on an image. Several
aspects have to be carefully considered to obtain statisticallymeaningful
results. To simplify notation, the analysis is based on fields that are
discretized in space.

Consider the example in Fig. 1(a), which shows part of a periodicmi-
crostructure comprising twophases: circular inclusions (white) embed-
ded in a matrix (gray). The inclusions have been numerically generated
by randomly perturbing the size and position of an initially regular grid
of equi-sized circles with diameter 2R. Damage (black) is mimicked by
shifting each inclusion to the right, applying a position perturbation,
and shrinking it by a factor two. These dimensions are indicated in the
zoom next to Fig. 1(a). Two fields are used to describe this image: the
image intensity I and the damage indicator D. For this example Ið x!iÞ
¼ 1 in the inclusion phase (white), Ið x!iÞ ¼ 1=2 in the matrix (gray),
and Ið x!iÞ ¼ 0 in damage (black). The damage indicator Dð x!iÞ ¼ 1
inside the damage (black) and is zero elsewhere. The position x!i denotes
the position of a pixel, taken at the position (i, j) in the pixel matrix.

The phase probabilityP arounddamage is calculated as theweighted
average
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where the weight factor Wð x!iÞ ¼ Dð x!iÞ for this example. The spatial
average is obtained by looping over all pixels i (optionally excluding a
boundary region of half the dimensions of the region-of-interest). It
thus corresponds to the normalized discrete convolution between W
and I . The result is the expectation value of the intensity,P, at a certain
position Δ x! relative to the damage site. It scales with the image con-
trast. In the limit case that I and W are separate fields that are both
explicitly known (i.e. zero or one), P is the probability to find I at a
certain position relative to W.

The analogy of P with a probability allows the interpretation of its
value based on simple statistical arguments. If there is no correlation
betweenI andW, thenP ¼ I, with I the spatial average of I. If, at a po-
sition Δ x! relative to the damage site, more inclusion phase is found
than its spatial average, then PðΔ x!Þ N I and vice versa.

For the example the result is shown in Fig. 1(b), where the colormap
recovers the extremes (black and white) of the image. Directly to the
left of the center (where the damage is) P ≫ I , i.e. the inclusion phase
is identified there. Directly around the center, in all other directions,P ≈
0which corresponds to damage (black in the image). At larger distance,
P b I corresponding to predominantly matrix phase. Several lighter re-
gions indicate a long-range correlation between damage and inclusion,
an intrinsic property of the example for which the inclusion positions
are not random but a random perturbation of an initially regular
arrangement.

The most obvious artifact in this result is that directly around the
damage in the center, damage is identified in a region that corresponds
to the size of the damage sites, R. As the goal is to identify the phase
around damage, this cross-correlation of damage should be avoided. It
is accounted for through a mask M, which is defined such that Ið x!iÞ

is ignored for all pixels whereMð x!iÞ ¼ 0. To remove “damaged” pixels
Mð x!iÞ ¼ 1−Dð x!iÞ. The average phase around damage is now:
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where the mask in the numerator ensures that the contribution of I in
thedamaged areas is omitted, and themask in the denominator corrects

1 The implementation is open-source. It is optimized, applicable to large sets of high res-
olution images (https://tdegeus@bitbucket.org/tdegeus/gooseeye.git and http://www.
geus.me/gooseeyewww.geus.me/gooseeye).

Fig. 1. Virtual experiment in the ideal setting: no noise and high phase contrast (a–d), and
the realistic setting: with noise and low phase contrast (e–h). From top to bottom: (a,e)
the two-phase microstructure, (b–h) the average phase arrangement around a damage
site calculated in three different ways. (i–j) An illustration of Equation (3), used in (d,h).
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