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The spontaneous breakup of nanowires into nanospheres is of crucial significance preventing it fromapplications.
In the present work, we propose a generalized stability criterion for nanowires, in contrast to the convectional
Rayleigh stability theory that has been widely employed to understand the breakup-mechanism of nanowires.

We demonstrate that the minimum instability wavelength is λcritical ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 � a2

q
in contradiction to the

convectional Rayleigh condition λcritical=2πR0, where R0 and a are the radius of the nanowire and the amplitude
of the perturbation, respectively. The modified theory is confirmed by the dynamic phase-field simulations of
different nanowire shapes.

© 2015 Elsevier Ltd. All rights reserved.

Metallic and semiconductor nanowires play essential roles in
nanoelectronics, optoelectronics, sensorics, and numerous other fields
[1,2,3,4,5]. Thermal annealing is often applied on nanowires as a post-
fabrication treatment to achieve desired physical properties [6,7].
During the thermal annealing process or even at room temperature,
nanowires may fragment into a chain of nanospheres [8,9,10,11], which
prevents it from applications. Also, nanospheres are purposely produced
from nanowires in microelectronic industry where the grain size affects
the electrical resistance and is hence of significant relevance [12].

The evolution of nanowires into nanospheres has been extensively
explained by the Rayleigh instability theory [13,14,15,16,17,10,18,19].
If we consider a nanowire with radius R0 perturbed by a sinusoidal
function in the radial direction R=R0+a sin(2πz/λ), the minimum
wavelength to cause the detachment is the circumference of the
nanowire λcritical=2πR0 according to Rayleigh's theory [20].

In the present work, we show that for λ b 2πR0, the detachment of
nanowire is able to take place depending on the perturbation amplitude,
which is in conflict with the classical Rayleigh theory. The minimum
perturbation wavelength λcritical as a function of the perturbation
amplitude a for λ b 2πR0 has been analytically derived. Moreover,
we demonstrate the modified theory by numerical experiments
based on the phase-field method.

As shown in Fig. 1(a), the atoms of a planar interface of nanowire-
environment are regularly ordered along the interface and therefore,
the chemical potentials for atoms and vacancies are both uniformly
distributed, establishing the thermodynamic equilibrium between the
nanowire and environment. While the interface is stirred by a sinusoidal
function, the potential energies along the interface of the nanowire are
inhomogeneous because of non-uniformly distributed mean curvature.
With contributions from the mean curvature, the diffusion potential
energy is expressed as [21]

Φ ¼ μ0
A þ γΩκ ; ð1Þ

where μA0 is the chemical potential of a planar interface as a reference
state illustrated in Fig. 1(a), γ is the isotropic interfacial energy, Ω is
the atomic volume, and κ is the signed mean curvature. For instance,
in two dimensions, the diffusion potentials at λ/4 and 3λ/4 are Φλ/4=
μA0+γΩ |κ | and Φ3λ/4=μA0 -γΩ |κ |, respectively (see Fig. 1(b)). The
gradient of the diffusion potential energy -∇Φ∝2γΩ∇κ in turn induces
a surface flux from λ/4 to 3λ/4, as schematically sketched in Fig. 1(c),
smoothing the nanowire.

We highly emphasize that for a three-dimensional surface x=
f (y, z), κ in Eq. (1) is the mean curvature rather than individual
principal curvatures. For a nanowire (radius R0, length nλ, n is
an integer) perturbed by a sinusoidal function in the radial direc-
tion R0+a sin (2πz/nλ), the mean curvature of the interface is
defined as κ ≡ 1

2∇ � n, where n is the normal vector expressed as

n=(-1,∂y f (y, z),∂z f(y, z)), with f ðy; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½R0 þ a sinð2πz=λÞ�2 � y2

q
.
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Exploiting the axi-symmetrical geometrics, the mean curvature only
depends on the longitudinal variable z

κ zð Þ ¼ 1
2

a 2π=λð Þ2 sin 2πz=λð Þ
1þ 2aπ=λð Þ2 cos2 2πz=λð Þ
h i3=2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

longitudinal curvature

þ 1= R0 þ a sin 2πz=λð Þ½ �
1þ 2aπ=λð Þ2 cos2 2πz=λð Þ
h i1=2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

radial curvature

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

ð2Þ

where the first term is the principal curvature contribution from the
longitudinal direction and the second term is the dedication from the

radial direction. For z=λ/4 and z=3λ/4, we obtain κλ=4 ¼ 1
2 ½að2π=λÞ2 þ

1=ðR0 þ aÞ� and κ3λ=4 ¼ 1
2 ½�að2π=λÞ2 þ 1=ðR0 � aÞ� . It is evident that

a(2π/λ)2 and -a(2π/λ)2 are the curvatures as the ones in two dimensions
and 1/(R0+a) and 1/(R0-a) are the curvature contributions from the
third dimension.

The distribution of themean curvature in the longitudinal direction z
is illustrated in Fig. 2(a) for different perturbation amplitudes. The
corresponding geometric setting is λ/d0=160 and R0/d0=30, where
d0 is the capillary length. For small amplitudes, e.g., a/d0=3, the mean
curvature decreases monotonically from λ/4 to 3λ/4, as shown by the
red solid line. In this case, the potential energy Φ at λ/4 is greater than
the one at 3λ/4, since κλ/4 N κ3λ/4. The difference in the diffusion poten-
tial Φ consequently induces a surface flux J1 from λ/4 to 3λ/4, as
sketched in Fig. 2(b). The subsequent effect is that the interface
contracts towards the center of the nanowire at λ/4 and bulges out at
3λ/4. The nanowire evolves till the interface becomes flat and the re-
spective diffusion potential Φ is uniformly distributed along the inter-
face. This monotonic decrease of the mean curvature from λ/4 to 3λ/4
is comparable to the situation in two dimensions.

With an increase of the amplitude, extrema of the mean curvature
occur between λ/4 and 3λ/4, as illustrated by the green, blue and
magenta lines in Fig. 2(a). The locations of the curvature extrema for
a/d0=8,13 and 18 are denoted by z1, z2 and z3, respectively. The corre-
sponding potential energiesΦ at λ/4 and 3λ/4 are both greater than the
ones at zi, i=1,2,3. Hence, two surface fluxes take place between λ/4
and zi and between 3λ/4 and zi, as schematically depicted by J1 and J2,

Fig. 1. Schematic illustration for chemical potential distribution affected by curvature: (a) The chemical potential is uniform distributed for a planar interface. (b) The chemical potential
along the interface of the nanowire is inhomogeneous because of perturbations. (c) A surface flux is induced by the gradient of diffusion potential Φ.

Fig. 2. Effect of curvature distribution on the surface flux for stirred nanowires: (a) Mean
curvature as a function of the spatial variable in the longitudinal direction for different
perturbation amplitudes. (b), (c), (d), and (e) schematic drawings of the directions of
the surface fluxes for perturbations with amplitudes a/d0=3,8,13,18, which correspond
to the red, green, blue and magenta lines in (a), respectively.
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