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2 5
26The newly developed self-consistent model exploits the trapping concept and calculates the numbers of
27A–A, A–B and B–B bonds in A–B alloys in dependence of the bond-energy parameters. Consequently the
28self-consistent model improves the classical regular solution model utilizing the assumption of random
29distribution of solute atoms. Remarkable differences between both models are demonstrated. The
30self-consistent model may significantly reduce the number of fitting parameters in the CALPHAD
31approach as well as experimental efforts.
32� 2015 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
33

34

3536 An overview on the thermodynamic modelling of solid solu-
37 tions can be found in books as [1–3], where several differently
38 complicated models for calculation of the configurational entropy
39 as well as interaction energy are presented. Some models must
40 be combined with minimizing methods to find the equilibrium of
41 the system. The hierarchy of models starts with the ideal solution
42 model and regular solution model, allowing a rather simple analyt-
43 ical treatment, continues with the cluster-site approximation and
44 quasi-chemical models and closes with a large family of computa-
45 tionally highly demanding models based on the cluster variation
46 method. The new concept presented in this paper is focused only
47 on thermodynamic models, which can be treated by analytical
48 methods.
49 The molar Gibbs energy of an A–B binary random solid solution
50 can be calculated within the ideal solution model as
51

GidealðyÞ ¼ ð1� yÞGA þ yGB þ RgT½y ln yþ ð1� yÞ lnð1� yÞ�; ð1Þ5353

54 where y is the mole fraction of the B component, (1 � y) is that of
55 the A component, GA and GB are molar Gibbs energies of pure A
56 and B components, respectively, and RgT is the product of gas con-
57 stant and absolute temperature. The third term in Eq. (1) represents
58 the configurational entropy term derived under the assumption
59 that each lattice position is occupied with the probability (1 � y)
60 by an A atom and with the probability y by a B atom.
61 It has been recognized since nearly a century that the ideal solu-
62 tion model often does not describe the Gibbs energy with sufficient

63accuracy. A regular solution model has become necessary to account
64for the bonding energies between the individual atoms repre-
65sented by an additional so-called excess energy term. Hildebrand
66[4–6] was obviously the first one who introduced in 1927 the term
67regular solution model, which has entered the text books, see, e.g.,
68Hillert [3] or Atkins et al. [7]. Guggenheim [8] studied in 1932
69the regular solution model within the framework of statistical
70mechanics. Following his concept of distinguishing A–A, A–B and
71B–B bonds we denote eAA as bond-energy of one mole of A–A
72bonds, eAB as that of A–B bonds and eBB as that of B–B bonds. Let
73each A atom have Z nearest neighbours, then due to an assumption
74of random distribution of atoms in the lattice each neighbour lat-
75tice position is occupied with the probability (1 � y) by an A atom
76and with the probability y by a B atom. Thus, there are
77Z(1 � y)2/2 mol of A–A bonds and Zy(1 � y) moles of A–B bonds
78in the system. The factor 1/2 for A–A bonds stems from the fact
79that each A atom is counted twice. The molar Gibbs energy of
80the system follows now as
81

GregðyÞ ¼ eAAZð1� yÞ2=2þ eABZyð1� yÞ þ eBBZy2=2
þ RgT½y ln yþ ð1� yÞ lnð1� yÞ�: ð2Þ 8383

84As the molar Gibbs energies of pure A and B components are
85given by GA = eAAZ/2 and GB = eBBZ/2 (insert y = 0 or y = 1 in Eq.
86(2)), Eq. (2) can be rewritten as
87

Gregðy; EÞ ¼ ð1� yÞGA þ yGB þ Zyð1� yÞEþ RgT½y ln y
þ ð1� yÞ lnð1� yÞ� ð3Þ 8989
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90 with the bond-energy parameter, E = eAB � (eAA + eBB)/2 compared
91 with Guggenheim [8] and later, e.g., with Bonvalet et al. [9]. The
92 third term in Eq. (3) then represents the so-called molar enthalpy
93 Hreg(y) of mixing, or heat of formation, as a well measurable quantity
94 from which the bond-energy parameter E can be determined. The
95 functional relation y(1 � y) can also be considered as a result of
96 so-called Bragg–Williams approximation [10] from 1935 dealing
97 with a two-lattice model. However, one must keep in mind that
98 the standard regular solution model accounts for the
99 bond-energies by assuming a random distribution of atoms inde-

100 pendently of the bond-energy parameter, E which is approved only
101 for values of E/(RgT) near to zero. To overcome this simplification
102 already Guggenheim [8] discussed several proposals for the func-
103 tional relation of the regular solution model depending on E (in
104 our notation). Later Redlich and Kister [11] suggested in 1948 the
105 interaction energy term for a binary system in the form,

106
Pn

i¼0Eiyð1� yÞð2y� 1Þi which is a purely mathematical extension
107 of the regular solution model for n = 0 and E0 � E. The second term
108 in the Redlich–Kister series is denoted as sub-regular model, see
109 e.g., [12]. Such a multi-parameter term for a multi-component sys-
110 tem has been widely applied, e.g., in the CALPHAD approach, see,
111 e.g., Kroupa [13] for an overview, the recent discussion by Chen
112 et al. [14] and Hillert [9] for the application of such a term also for
113 the case of several sublattices (the so-called compound energy for-
114 malism). It should be mentioned that Pelton et al. [16] pointed to
115 the fact that several interaction energy terms in the literature lead
116 to a thermodynamical inconsistency, e.g., the violation of the
117 Gibbs–Duhem equation, see also Hillert [3, chpt. 20.7]. A more accu-
118 rate treatment of the excess energy term compared to that in the
119 regular solution model can be provided also by a physically-based
120 self-consistent model utilizing the so called ‘‘Trapping Concept’’
121 [17]. The presentation of this new model is the goal of this paper.
122 Let us assume that one mole of the system, consisting of A and B
123 atoms, is dilute with respect to the B component. The
124 bond-energies, eAA eAB and eBB are known, and the chemical compo-
125 sition of the system is given by the overall mole fractions (1 � y)
126 and y of A and B components, respectively. The term ‘‘overall’’
127 means ‘‘related to the whole system’’. If X is the molar volume,
128 then the overall concentrations of A and B elements are given by
129 cA = (1 � y)/X and, cB = y/X respectively.
130 The assumption that the solution is dilute with respect to B
131 components does not represent a substantial limitation. In the case
132 of significant positive values of E the intermixing of components is
133 small and the solution gets automatically dilute. In the case of sig-
134 nificant negative values of, E the system tends to form ordered
135 phases, which limit the solubility in the disordered phases and
136 the solution gets dilute again. For the values of E near to zero the
137 existing regular model is well applicable without any limitation
138 due to dilution.
139 Let the B atoms have a tendency to form B–B couples (pairs,
140 dimers). Then one can assume that each B atom provides Z ‘‘trap’’
141 positions for other B atoms. Consequently, the system can be
142 divided into two subsystems: (i) lattice positions being not the near-
143 est neighbours of B atoms, denoted as ‘‘lattice positions’’ and char-
144 acterized by their molar volume VL and the overall concentration
145 cL of untrapped B atoms, and (ii) lattice positions being the nearest
146 neighbours of B atoms, denoted as ‘‘trap positions’’ and character-
147 ized by their molar volume VT and the overall concentration cT of
148 trapped B atoms. Just the application of the trapping concept allows
149 introducing of a free system parameter cT (later) XcT characterizing
150 the internal atom distribution in the system.
151 The overall concentrations cL and cT are additive quantities
152 cB = cL + cT yielding
153

XcL ¼ y�XcT : ð4Þ155155

156Thus, with a limitation due to dilution, the volume, VT corre-
157sponding to one mole of trap positions for B atoms, and the vol-
158ume, VL corresponding to one mole of lattice positions, are given by
159

1
VT
¼ ZcB;

1
VL
¼ 1

X
� 1

VT
¼ 1

X
� ZcB: ð5Þ 161161

162The mole fraction yL of untrapped B atoms in lattice positions
163and the mole fraction yT of trapped B atoms in trap positions are
164given with XcB = y as
165

yL ¼ cLVL ¼
cB � cT

1=X� ZcB
¼ y�XcT

1� Zy
; yT ¼ cT VT ¼

cT

ZcB
¼ XcT

Zy
: ð6Þ

167167

168Eqs. (4)–(6) represent a set of 5 constraints for 6 state variables,
169namely, cL, cT, VL, VT, yL yT. Thus, the system has one degree of free-
170dom. The state variables, cL, VL, VT, yL yT are expressed by means of
171cT in Eqs. (4)–(6), and cT is considered as free variable. Later XcT is
172used as the free variable for sake of simplicity.
173To calculate the molar Gibbs energy Gself of the system within
174the self-consistent solid solution model, it is necessary to express
175the numbers of A–A, A–B and B–B bonds by means of the free vari-
176able XcT. The number of moles of B–B bonds is given by XcT/2 since
177XcT is the number of moles of trapped B atoms and always two B
178atoms form a B–B bond. Note that this is valid only for B–B bonds
179in B–B couples, which are dominating in the dilute system. If there
180is no B–B bond in the system, the number of moles of A–B bonds is
181Zy. If two B atoms get bonded, two A–B bonds disappear and one
182A–A bond and one B–B bond are created. Consequently, for
183XcT/2 mol of B–B bonds in the system, the number of moles of
184A–B bonds is given by Zy �XcT. Since the total number of moles
185of A–A, A–B and B–B bonds accounts, Z/2 the number of moles of
186A–A bonds amounts Z/2 � Zy + XcT/2.
187The molar Gibbs energy Gself can be calculated analogously as in
188the standard regular solution model as 189

Gself ¼ eAAðZ=2� ZyþXcT=2Þ þ eABðZy�XcTÞ þ eBBXcT=2
þ RgTfX=VL½yL ln yL þ ð1� yLÞ lnð1� yLÞ�
þX=VT ½yT ln yT þ ð1� yTÞ lnð1� yTÞ�g
¼ ð1� yÞGA þ yGB þ ðZy�XcTÞE
þ RgTfX=VL½yL ln yL þ ð1� yLÞ lnð1� yLÞ�
þX=VT ½yT ln yT þ ð1� yTÞ lnð1� yTÞ�g: ð7Þ 191191

192The configurational entropy is expressed in Eq. (7) as sum of
193configurational entropies for two subsystems, the first one consist-
194ing of lattice positions and the second one of trap positions. The
195quantities X/VL = 1 � Zy and, X/VT = Zy see Eq. (5), represent the
196numbers of moles of atoms in the subsystems, respectively. If
197one fixes y and uses yT = XcT/(Zy) and, yL = XcL/(1 � Zy) see Eq.
198(6), in Eq. (7), Gself becomes a function of XcT and XcL constrained
199by Eq. (4). The quantities XcT and XcL represent the numbers of
200moles of B atoms in trap positions and lattice positions, respec-
201tively. The chemical potentials lB,T and lB,L of B atoms in trap
202and lattice positions are then given as 203

@Gself

@ðXcTÞ
¼ lB;T ¼ �Eþ RgT lnðyT=ð1� yTÞÞ;

@Gself

@ðXcLÞ
¼ lB;L ¼ RgT lnðyL=ð1� yLÞÞ ð8Þ

205205

206which yields for lB,T = lB,L the equilibrium state, denoted by the
207subscript ‘‘eq’’ and expressed by the relation 208

yL;eqð1� yT;eqÞ
ð1� yL;eqÞyT;eq

¼ expð�E=RgTÞ: ð9Þ
210210

211Eq. (9) is the central relation of the ‘‘Trapping Concept’’ and goes
212back to Oriani [18] in 1970 and the according derivation in [17]
213within the context of trapping of hydrogen. It should be noted that
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