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Prismatic punching is a process where voids grow through the nucleation and emission of prismatic dislocation loops (PDLs). In this work we
employ dislocation dynamics to determine the effect of image stresses produced by the void’s free surface on PDL formation in a face-centered cubic
lattice. We find that image stresses cause PDL formation to fall into two distinct pressure regimes. In the low pressure regime, image stresses
dominate dislocation cross-slip, reducing the PDL’s size and formation rate.
Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
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During the initial stages of void growth, disloca-
tions nucleated from the void’s surface are assumed to
punch out material from the void [1]. However, dislocations
nucleated as glide loops with a Burgers vector in the plane
of the loop cannot remove material. It is only after the con-
version of the glide loop into a prismatic dislocation loop
(PDL) with a Burgers vector normal to the loop that mate-
rial removal through punching is possible [2]. The conver-
sion from a nucleated dislocation into a PDL can occur
through an interaction with dislocations on other glide
planes or through multiple cross-slip events [3,4]. In both
formation mechanisms, the PDL is assumed to form under
the action of the stress concentrators arising from the far-
field load’s interaction with the void. In this letter we report
a new limiting factor on PDL formation. We show that
image stresses produced by the interaction of the disloca-
tion with the void’s free surface dominate PDL formation
for pressures below 3.0 GPa and limit void growth.

Plastic void growth occurs during the ductile failure pro-
cess where high-strain loading leads to void nucleation,
growth, and coalescence into microcracks. After a nano-
sized void is nucleated at a weak spot in the lattice, it grows
plastically through dislocation related processes. The initial
stages of void growth occurs through the nucleation of
dislocations from the void’s surface [3,5]. Dislocation
nucleation remains active up to micron sized voids at which
point the density of dislocations in the material becomes
large enough to support continued plastic growth through
dislocation multiplication [6]. At the early stages, submi-
cron void growth becomes strongly dependent on the dis-
crete volume changes due to the formation and emission
of individual PDLs.

High strain rates and small void sizes, typical for atomis-
tic simulations, reveal PDL formation via interaction of
multiple nucleated dislocation loops on different glide
planes [3]. In a stark contrast to the high-strain rate sim-
ulations, Ashby and Johnson [4] describe a fully 3D mecha-
nism for PDL formation around a spherical particle as
originating from a single incipient dislocation loop. In their
model, the misfit particle induces a stress field equivalent to
that of a void under far-field hydrostatic stress [7]. Under
the action of this stress field, the incipient dislocation loop
expands out from the particle, cross-slipping onto other
glide planes once it becomes energetically favourable.
After a sequence of four cross-slip events, a PDL is finally
formed.

Ashby and Johnson’s model was developed for PDL for-
mation around a particle and therefore does not include the
effect of the void’s free surface on dislocation cross-slip.
However, image forces arising from the dislocation’s inter-
action with the free surface have been shown to be influen-
tial on cross-slip in previous atomistic and dislocation
dynamics simulations [8,9]. In this work, we employ 3D
dislocation dynamics to determine the effects of these image
stresses on the mechanisms which allow an incipient
dislocation loop nucleated from the surface of a void to
evolve into a PDL. Our simulations are based on the
dislocation dynamics formulation of van der Giessen and
Needleman [10]. In this formulation, the stress fields due
to dislocations in an infinite perfect crystal are combined
with those obtained from a solution of an auxiliary bound-
ary value problem with suitable traction boundary condi-
tions. We utilize the Parallel Dislocation Simulator
(ParaDiS) [11] for the former and a parallel finite element
code for the latter [12,13].
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The material considered is a model face-centered cubic
(fcc) crystal of aluminum with shear modulus
l ¼ 27 GPa, Poisson’s ratio m ¼ 0:35 and Burgers vector
magnitude jbj ¼ 2:86 Å. A linear mobility function is
employed to relate the force on the dislocation to its veloc-
ity through f i ¼ Bivi. Here, f is the dislocation force, B is
the drag coefficient, v is the dislocation velocity and sub-
script i indicates the dislocation character, either edge or
screw. We assume that drag coefficients in the linear mobil-
ity function satisfy Bscrew=Bedge ¼ 2. The above ratio has
been determined by Olmsted et al. [14] from atomistic sim-
ulations. We emphasize that according to this mobility
function, the same stress value will propel edge dislocations
to move twice as fast as screw dislocations. Thus, screw ori-
ented dislocations able to cross-slip will be preferred.
Moreover, since only dislocations with a full Burgers vector
are modeled, cross-slip of screw dislocations will occur once
stresses become favourable. Finally, we emphasize that the
local force on the dislocation includes Peach–Koehler
forces from other dislocations and the far-field loading as
well as the dislocation’s self-energy by recourse to the
line-tension model.

Our computational domain is a cube of edge length
l ¼ 25; 000 jbj containing a single void of radius
Rv ¼ 100 jbj at the center. Tractions imposing a uniform
stress field r1 ¼ pI, where I is the identity tensor and
p > 0, are applied to the outer cube boundaries. It bears
emphasis that pressure p is being defined as hydrostatic ten-
sion. Image tractions due to the dislocations are applied to
the void surface. We discretize the computational domain
with variable sized quadratic tetrahedral elements yielding
a 2:5 jbj resolution in the vicinity of the void.

Dislocation nucleation is not examined in the present
work and all dislocations are assumed to originate from
an incipient dislocation structure. The nucleation of any
incipient dislocation structure around the void is driven
by the resolved shear stress on a glide plane defined as
rbn ¼ n̂ � r � b̂, where r; b̂ ¼ b=jbj, n̂ ¼ n=jnj are the stress,
the unit Burgers vector and the unit normal of the glide
plane, respectively. In Figure 1, we plot rbn in the region
near the void for the two families of glide planes: (a)
n ¼ ð111Þ and (b) n ¼ ð�1�11Þ sharing the Burgers vector
b ¼ ½�110�. An ideal PDL with b ¼ ½�110� shown by the blue
and red lines in Figure 1(c) is made up of a continuous
dislocation loop gliding on these families of glide planes
denoted by the dashed lines and numbered (i) through
(iv). The Burgers vector b ¼ ½�110� of this PDL is oriented
toward the reader. Under the action of r1, the maximum
of rbn ¼ � 3

4
p for each of the two glide planes is located

at a distance of Rv=
ffiffiffi

2
p

from the center. In order to mimic
the effect of dislocation nucleation in our simulations, an
incipient dislocation configuration composed of a
½�110�ð111Þ-type dislocation glide loop with radius
RL ¼ 25 jbj is placed on the void surface at the position
of the maximum resolved shear stress, as indicated in
Figure 1(c). We emphasize that this incipient dislocation
loop is not always stable as it is drawn into the void if
p 6 1:4 GPa.

We start by assessing the sequence of events assumed by
Ashby and Johnson’s classical model for PDL formation.
In order to account for free surfaces in our simulations,
dislocations intersecting the surface are terminated with
the end on the surface constrained to move along the sur-
face. Moreover, we approximate free surface effects on
the dislocation self energy by removing line-tension forces

at the surface. We connect dislocation surface nodes via
so-called virtual dislocations to the center of the void as
to maintain a zero net Burgers vector for the surface termi-
nated dislocations [15]. We point out that the above

(a) (b)

(c)

Figure 1. Glide stress due to the far-field load near the void surface for
b ¼ ½�110� and glide plane normals (a) n ¼ ð111Þ or (b) n ¼ ð�1�11Þ. The
colourbar shows the normalized stress, rbn=p. (c) Void surface coloured
by the glide plane maximizing rbn. The light grey quadrant indicates
the region where jrbn¼ð1 1 1Þj > jrbn¼ð�1 �1 1Þj and dark grey indicates the
opposite. Light grey quadrants favour growth of ½�110�ð111Þ type
dislocations shown in blue and dark grey quadrants favour growth of
½�110�ð�1�11Þ type dislocations shown in red. The incipient ½�110�ð111Þ
dislocation loop is dimensioned and labeled RL. The red and blue lines
indicate the ideal PDL that would be generated from the incipient
dislocation and passes through points maximizing rbn. Each glide
plane of the PDL is labeled (i–iv). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version
of this article.)

(a)

(b)

Figure 2. Evolution of an incipient dislocation loop into a PDL for (a)
p ¼ 4:5 GPa and (b) p ¼ 2:5 GPa. Two views of the PDL are shown at
each time step labeled by ~t with units GPa�1. The top view showing the
contour of the PDL uses the coordinate system in Figure 1. The lower
view shows the profile of the PDL peeling off in the b ¼ ½�110�
direction. Dislocation and void quadrant colouring are described in
Figure 1(c).
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