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In face-centered cubic (fcc) metals, defects with dislocation character are the main component of the radiation microstructure. Despite the large
number of reported interaction mechanisms, a significant ratio of interactions results in defect absorption, leading to the forming of superjogs and
helical turns. Since absorption is controlled by elastic relaxation, dislocation dynamics simulations are used to determine the corresponding hard-
ening. In agreement with experiments, simulation results reveal a strong hardening level, independent of the alloy friction or the dislocation velocity.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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The radiation microstructure in face-centered cubic
(fcc) alloys is basically formed of dislocation loops (DLs),
stacking fault tetrahedrons and unresolved black dots [1].
Since, black dots were recently identified as small DLs [2],
most radiation defects thus have a dislocation character.
On the other hand, irradiation is known to induce great
strengthening [3]. Following the disperse barrier hardening
model [4], the average planer spacing l of defects of average
size D and number density C is (DC)�½, and the increase in
the critical resolved shear stress Ds is given by:

Ds ¼ aGb
ffiffiffiffiffiffiffi
DC
p

ð1Þ
where a is a coefficient accounting for the strength of the
defect, G is the shear modulus and b is the norm of the Bur-
gers vector. From fitting experimental results of neutron-
irradiated austenitic stainless steels, a was found to be
between 0.42 and 0.52 [5,6] and between 0.25 and 0.44
[7], while in nickel it was close to 0.5 [8]. These values are
substantially larger than the analytical estimate for ran-
domly distributed loops [9].

Atomistic simulations (ASs) were used to study the
interactions between radiation defects and mobile disloca-
tions. ASs have revealed a large number of mechanisms
[10,11]. However, it is found that if the defect is not too
large (say, a few nanometers) and the dislocation velocity
is not too large (say, a few meters per second), most defects
are absorbed when they get close to the impinging disloca-
tion, leaving double superjogs on edge dislocations (EDs)
[12] and helical turns on screw dislocations (SDs). This
was established in nickel [13] and in materials of low
and high stacking fault energy [14,15] and confirmed in

experiments [16]. The absorption seems to increase with
temperature and decrease with stacking fault energy. At a
larger simulation scale, Mastorakos and Zbib [17] proposed
another formula for radiation hardening in a-iron, fitted on
dislocation dynamics (DD) results. DD was also used to
investigate dislocation decoration [18,19] and interaction
with uniform and segregated loop distributions [20,21]
according to the cascade-induced source hardening model
[22]. In these papers, the contact reaction with mobile dis-
locations was not accounted for: defects within a critical
distance were explicitly removed from the simulation box,
leaving only the possibility of long-range elastic interac-
tions to impede dislocation motion. This is probably at
the origin of the low hardening reported with randomly dis-
tributed defects. Recently, Arsenlis et al. [23] used DD sim-
ulations to investigate interactions with perfect prismatic
loops in a-iron. They provided a value of a = 0.27, which
is close to the strength of forest dislocations. However,
the size of the considered loops is quite large compared
with typical defect sizes in irradiated materials [1], and
non-elastic interaction features, such as the rotation of
the loop Burgers vector, were not allowed.

Absorption is thus the predominant interaction result
with small loops while, at the same time, its strength is large
[14]. This is why it is necessary to correctly estimate the
hardening effect of the absorption mechanism. To do this,
all loops were taken to be of collinear type, i.e. sharing
the same Burgers vector as the mobile dislocation. Because
the reaction with collinear dislocation loops (CDLs) is com-
pletely controlled by elastic relaxation [24], DD simulations
were used to predict dislocation interactions with the CDLs
and to determine the induced hardening.

The DD technique used in this work has been described
in a separate paper [25]. We present here only the specific
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features peculiar to the present study. An ED or SD is
introduced into a rectangular parallelepiped, used to model
a small fcc crystal, containing a large number of randomly
distributed CDLs. The crystal axes are parallel to the
Burgers vector (½ [�110]), to the �1�12

� �
direction and to

the normal of the slip plane [111]. In order to increase the
computing efficiency, the dimension parallel to [111] was
reduced to four times the size of the CDLs. Periodic bound-
ary conditions were applied in the three directions, resulting
in an infinite SD or ED. The simulation box is loaded with
a uniaxial constant strain rate. A dislocation segment is
allowed to move in the simulation when the effective stress
seff is larger than a threshold stress, called the friction stress
sf. Its velocity is given by v = b(seff – sf)/B, where B is the
friction coefficient. In our simulations, we considered the
values b = 0.25 nm, B = 10�4 Pa.s, a Poisson’s coefficient
of 0.33 and a shear modulus G of 84 GPa.

The generated loops are initially of edge character of dif-
ferent sizes (2, 3 or 4 nm) and densities (1022–1023 m�3).
The size of the simulation box parallel to the dislocation
line was equal to at least 10 times the average loop planer
spacing l, while the box size parallel to the direction of
motion was close to 20 l. In addition to the CDL size and
density, the effects of the friction stress (10 and 100 MPa)
and the average dislocation velocity (1.0 and 0.1 m s�1)
were also investigated.

In the case of the ED, simulations reveal a global drag of
the CDLs in the direction of motion of the dislocation.
When the ED does not cut a CDL in the middle, a net
attractive or repulsive force appears. In the repulsive case,
the CDL is pushed in front of the edge dislocation, while
in the attractive case two configurations can be met. If
the CDL cuts the slip plane, a collinear interaction occurs,
leading finally to the formation of two superjogs. The initial
CDL is truncated, resulting in a CDL of smaller size. When
the CDL does not cut the slip plane, it is simply dragged
behind the ED. Figure 1(a) shows a snapshot of the ED
interacting with 4 nm loops of 2 � 1022 m�3 density. It
can be clearly observed that many CDLs are gathered in
front of the dislocation, while a small density of smaller
loops are left behind.

For the SD, Figure 1(b) shows interaction with 2 nm
loops of a density equal to 1023 m�3. A large density of heli-
cal turns with a large bow-out between them can be seen.
The density of CDLs is almost the same in front and behind
the dislocation. These features are consistent with the inter-
action dynamics reported by Arsenlis et al. [23]. The load-
ing curves corresponding to these simulations are plotted in
Figure 2. Since sf was modified in some simulations, the
quantity of interest is Ds = (sapp – sf), with sapp the applied
shear stress. For the sake of brevity, Ds is called “stress” in
the following. In Figure 2, the stress is plotted as a function
of the area swept by the dislocation, normalized by the
average area per CDL. This allows us to analyze the stress
as a function of the number of CDLs swept by the
dislocation.

In the ED case, the stress first increases before reaching
a plateau with multiple peaks related to pinning–unpinning
events. The initial increase can be explained by the loop
drag, since every dragged CDL generates a friction force
amounting to 4bDsf. The plateau regime is found to corre-
spond to saturation in the number of dragged CDLs. Dur-
ing the ED motion, the concentration of the dragged loops
fluctuates along the dislocation line. The ED starts to
bow-out between regions of high CDL density and form

segments of screw character. Helical turns then start to
form, strongly pinning the curved ED. As can be seen in
Figure 2, the plateau is reached rapidly for large CDL den-
sity, large friction stress and large dislocation velocity. For
C = 1022 m�3, sf = 100 MPa and v = 0.1 m s�1, the plateau
is reached after interaction with almost 120 CDLs, while it
is reached after interaction with approximately 60 loops for
C = 1023 m�3, sf = 10 MPa and v = 1 m s�1. However, the
value of the plateau stress seems to be independent of loop
size, friction stress or dislocation velocity.

For the SD and after interaction with fewer than 20
CDLs, a stress plateau is reached, basically depending on
the CDL density and size, as can be observed on Figure 2.
In order to perform a quantitative analysis, we associate
with every plateau a single stress value corresponding to
the average of stress maxima. This value is thought to be
representative of the critical stress, because the magnitude
of the stress drop after unpinning mainly depends on the
box height, while a stress maximum represents the strength
of the loop configuration along the dislocation line. The
obtained stress values are plotted in Figure 3 as a function
of the CDL density and size, for different friction stresses
and dislocation velocities. Data for the SD are indicated
by “sc” and those for the ED by “ed”. Since CDLs are ran-
domly distributed, we first compare our results with the
strengthening induced by impenetrable obstacles, predicted
by the Bacon, Kockes and Scattergood (BKS) model
reported in Ref. [26] and confirmed later by DD simula-
tions [27]. The stress predicted by the BKS model is given
by:

DsBKS ¼
ln D
ln l

� �3
2 G
pl

ln l ð2Þ

Here, we note that, in the original paper [20], the authors
normalized lengths l and D by b and ignored the constant
(0.7) found in the fitting procedure. Since 0.7 is close to
ln2, we believe that normalization must be done by b/2.
This modification is found to greatly improve the model
predictions of the Orowan hardening.

Predictions of Eq. (2) are depicted in Figure 3. The fig-
ure shows that the strengthening induced by CDLs is
almost twice the strengthening induced by impenetrable
particles of the same size and density. The reason is clearly
related to the elastic relaxation of the helical turns, which
decreases the length of free dislocation segments, as sug-
gested by Rodney [13].

Values of the plateau stress obtained with the ED are
also shown in Figure 3. The two dislocations exhibit com-
parable interaction strengths.

The last analysis of our results is the comparison with
experimental results fitted on Eq. (1), which is still widely
used in the scientific community. We thus plot in Figure 4
the strengthening obtained in DD simulations as a function
of the Orowan stress Gb

ffiffiffiffiffiffiffi
DC
p

for different densities, sizes,
friction stresses and dislocation velocities. A reasonable lin-
ear correlation is obtained, with a slope close to 0.5. This
result suggests that the interaction coefficient a in Eq. (1)
equals 0.5.

While the effect of the dislocation velocity is negligible
(see Fig. 4), the strengthening seems to decrease slightly
with increasing friction stress. The relaxation of the helical
turn, considered to be at the origin of strengthening, is thus
impeded by the friction stress. This effect is thus similar to
that observed in forest hardening [28] and confirmed
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