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We present a new analytical model for predicting the tensile and compressive mechanical properties of bimodal nano-aluminum
alloys. The model relies on simple material variables that show a Hall–Petch-like grain size dependence including a newly defined
ductility parameter which can be used with the Hollomon equation to allow for the prediction of failure stress and strain. When the
model is applied to bimodal nano-aluminum alloys, the results show excellent agreement with the experimental observations.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Bimodal metallic nanomaterials are a recent
development in powder metallurgy (PM) techniques that
combine grains of significantly different sizes [1,2]. In bi-
modal alloys, a high-strength nanocrystalline (NC)
phase, produced by cryomilling, is mixed with a highly
ductile coarse-grained (CG) powder to produce attrac-
tive materials having both high strength and good duc-
tility. To date, the most widely reported mechanical data
is for bimodal materials of aluminum (Al), and these
materials can form the basis for even higher-strength tri-
modal alloys, which combine nanoparticle (NP) ceramic
reinforcements in the NC phase [1–5]. There is, however,
no means of predicting mechanical properties such as
yield strength (ry), maximum stress and failure strain
(efailure) for these bimodal materials. In the present work,
an analytical model has been developed that describes
these properties based on the grain size dependence of
several material properties and the assumption that the
stress–strain behavior of the material can be described
by the Holloman equation [6]. The model is then applied
to experimental results of both tensile and compressive
tests of Al-5083 bimodal materials tested in the longitu-
dinal direction, as sufficient data exists for these materi-
als and they exhibit advanced mechanical properties that
cannot be achieved in similar monolithic alloys [2].

Since the bimodal materials are composed of mix-
tures of two identical phases of the same alloy, the only
substantial difference between the phases is the grain
size. It will be shown that many of the material proper-
ties necessary to determine the mechanical properties
can be described by a “rule of mixtures” behavior, such
that any property, P , depends on the properties of the
CG and NC phases (P CG) and P NC, respectively), and
the volume fractions of each phase (fCG and fNC)
through P ¼ fCGP CG þ fNCP NC. These properties include
yield stress (ry), strain-hardening exponent (n) and a
newly defined ductility parameter (A) that will be ad-
dressed later. ry depends on the strengthening mecha-
nisms that are active in the material. In multiphase
materials, such as precipitation-hardened alloys or me-
tal-matrix micro- and nanocomposites, there is a signif-
icant difference in the properties of each phase.
However, for the bimodal alloys processed by the PM
technique, strengthening mechanisms that rely on differ-
ences between the two phases, such as coefficient of ther-
mal expansion strengthening and modulus mismatch
strengthening, are not likely to affect the yield strength
of the mixture. Although Orowan strengthening is
intrinsic to metallic alloys, it is unlikely that there is a
significant strength difference between the CG and NC
phases. Therefore, grain boundary (i.e. Hall–Petch)
strengthening remains the primary mechanism actively
influencing the strength of the bimodal material.
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To predict the maximum stress and strain to failure
for the biomodal materials in our model, it is assumed
that (i) the stress–strain behavior in the plastic regime
can be described by the classical Hollomon relation
[6], and (ii) the material fails at the ultimate tensile or
compressive stress (UTS or UCS). An analysis of the
experimental data sets [1–5] shows that the second
assumption appears to be generally valid in the case of
Al-based nano-alloys as failure occurs very near the
maximum stress and there is little unstable deformation.
When the failure stress (rt�max) considerably deviates
from the UTS in other alloy systems, the model can be
applied to predict the UTS. It is also assumed that the
true yield strain (et�y) can be linearly approximated from
the yield stress and the elastic modulus, Y. Given the
above approximations, the strain-hardening exponent,
n, is described by Eq. (1), where rt�max and et�max are
the true maximum stress (i.e. UTS or UCS) and strain
to failure, respectively:

n ¼ ln rt�max � ln rt�y

ln et�max � ln et�y
: ð1Þ

To predict the failure stress and strain, a newly de-
fined ductility parameter, A; serves as the failure criteria
in this model. This ductility parameter is defined as the
area under the ln rt vs. ln et curve (where rt and et repre-
sent the true stress and true strain, respectively) between
the yield stress and maximum (i.e. failure) stress as de-
scribed by the following equation:

A ¼ ln rt�max þ ln rt�y

2
ðln et�max � ln et�yÞ: ð2Þ

The strain to failure (et�max) can be determined from
Eq. (3), which is a rearrangement of Eq. (2) and makes
use of the relation that ln rt�max ¼ ln rt�y þ n lnðet�max=
et�yÞ. When Eq. (3) is solved for a positive root, et�max

is then a function of the true yield stress (rt�y) and strain
(et�y) as well as n and A according to Eq. (4).

ln
et�max

et�y
¼ 2A

2 ln rt�y þ n ln et�max

et�y

ð3Þ

et�max¼ et�failure

¼ et�y exp
� lnrt�yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnrt�y

� �2þ2nA
q

n

0
@

1
A: ð4Þ

The failure stress (rt�max) can be predicted using the
same assumptions as listed above and is also a function
of rt�y and et�y as well as n and A given by the following
equation:

rt�max ¼ rt�failure

¼ rt�y expð� ln rt�y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln rt�y

� �2 þ 2nA
q

Þ: ð5Þ

As stated above, in bimodal nano-alloys, the
properties of the material are dominated by grain size
dependency and as such: (i) the grain sizes of each phase
must be measured or determined, and (ii) the grain-size-
dependent behavior of rt�y , n and A must be described.
For Al-5083 materials, average grain sizes were not re-
ported and have therefore been back-calculated using

the experimental yield stress and the published Hall–
Petch parameters [5]. Based on ry of the unimodal CG
material reported in Ref. [4], the average diameter of
the CG phase was determined to be 127.6 lm. Using
the experimental data in Refs. [2–4], it was found that
ry varies linearly with fCG for materials containing
30 vol.% or greater of the CG phase and can be accu-
rately described by the rule of mixtures if the grain size
of the NC phase is �90 nm. However, there is a definite
non-linearity in the trend of ry vs. fCG for materials con-
taining less than 30 vol.% CG. Given that the only differ-
ence between the two phases is the grain size, it is likely
that the non-linearity is the result of an increase in the
grain size of the NC phase, DNC. In materials with low
CG vol.%, the contiguity of NC phases increases and this
increased contact will allow more efficient coarsening of
this phase. Figure 1a shows the DNC and DCG variations
as a function of CG fraction, fCG, based on Refs. [2–4].
DNC values were back-calculated assuming that (i) the
CG phase has a diameter of 127.6 lm and does not coar-
sen (based on the fact that there is no non-linearity in the
CG-rich region of the ry versus fCG curve); (ii) the rule of
mixtures determines the ry behavior; and (iii) ry of the
NC material is described by the Hall–Petch relation.
From Figure 1a, DNC can be empirically determined by
DNC ¼ DNC�min þ ðDNC�max � DNC�minÞ expð�fCG

f �CG
Þ using

the appropriate values for the maximum and minimum
NC grain diameters, DNC�max and DNC�min, and the critical
volume fraction of CG phase, f �CG, from Table 1. DNC�min

was determined to be 91.3 nm using the back-calculated
grain size of the NC phase in the range of 30–100 vol.%
CG. DNC�max was determined to be 145.9 nm from the re-
ported yield stress of the unimodal NC material using the
Hall–Petch parameters for Al-5083 [5]. Because the same
sample material was used for both tension and compres-
sion, DNC and DCG in the compression tests are assumed
to be the same as in the tensile test. The Hall–Petch data
for compression was determined from a plot of compres-
sive ry vs. D�1=2 for the unimodal NC and CG materials
as reported in Refs. [1,3]. Using the rule of mixtures, the
NC contribution to A and n can be back-calculated.
Figure 1b shows the dependence of A and n on D�1=2

for the material tested in tension, where the solid lines
in Figure 1b indicate the trend lines of A and n as a func-
tion of D�1=2 using linear regression. The strain-harden-
ing exponent clearly follows a Hall–Petch-like
dependence on grain size described by n ¼ no þ Kn=

ffiffiffiffi
D
p

,
where no and Kn are the strain-hardening exponent for
an infinitely large grain and the corresponding Hall–
Petch constant, respectively. Moreover, the ductility
parameter, A, also clearly follows a Hall–Petch-like grain
size dependence. Similar behavior was exhibited by sam-
ples in compression, and based on the regression lines for
both tension and compression, the Hall–Petch parame-
ters in Table 1 (Ao, KA, no and Kn) were determined. Based
on this analysis, it is possible to calculate A and n for each
phase and use the rule of mixtures to determine A and n
for any combination of fNC and fCG. Having determined
rt�y , A, and n, Eqs. (4) and (5) can be used to predict the
failure stress and strain.

Based on the model parameters in Table 1 and the
empirical expression of DNC, Figure 2 shows the rule
of mixtures predictions for A and n (dotted lines) as a
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