Accepted Manuscript

Effect of Al doping on Crystallography and Electro-Optical properties of ZnO Semiconductor Thin Films Prepared by Electrospinning

Solid State Sciences

Soheila Osali, Hamid Esfahani, Hamid Reza Karami

PII: S1293-2558(18)30356-X

DOI: 10.1016/j.solidstatesciences.2018.05.016

Reference: SSSCIE 5702

To appear in: Solid State Sciences

Received Date: 29 March 2018

Accepted Date: 27 May 2018

Please cite this article as: Soheila Osali, Hamid Esfahani, Hamid Reza Karami, Effect of Al doping on Crystallography and Electro-Optical properties of ZnO Semiconductor Thin Films Prepared by Electrospinning, *Solid State Sciences* (2018), doi: 10.1016/j.solidstatesciences.2018.05.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Optical properties of ZnO Semiconductor Thin Films Prepared by Electrospinning

Soheila Osali¹, Hamid Esfahani^{1,*}, Hamid Reza Karami²

¹-Materials and Science Engineering Department, Engineering and Technical Faculty, Bu-Ali Sina University, Hamedan, Iran

²-Electrical Engineering Department, Engineering and Technical Faculty, Bu-Ali Sina University, Hamedan, Iran

*Corresponding Author; P.O.B: 65178-38695, Tel & Fax: +98-81-38381601-10 h.esfahani@basu.ac.ir

Abstract

Zinc oxide (ZnO) thin film has in recent years emerged due to its unique physical, electrical and chemical properties. The microstructural and optical properties of nanocrystallite ZnO films fabricated using electrospinning and post-calcination, undoped and doped with aluminum, (AZO nanostructure films) were investigated in this study. The results indicated that the crystallized and monolithic AZO films comprised perfectly linked ZnO nanoparticles (NPs). Al incorporation deformed the lattice geometry (a and c axis) and crystallite size of (002) plane, and led to formation of zinc vacancies and Al interstitial/substituted sites. Functional molecule groups and optical properties of pristine ZnO and AZO films were studied by far-FTIR, PL and UV-Vis techniques. Our findings showed that doping ZnO with Al resulted in the Zn-O bond shifting towards higher energy levels, and it polarized the visible lights more than pure ZnO thin films. Furthermore, the formation of the large concentration of point defects in sub-atomic structure of AZO (6 wt.% Al) reduced the optical band gap energy of ZnO from the 3.4 e.V to 3.05 eV. The optical transmittance of AZO films was higher than 83% in visible light range. The electrical conductivity of ZnO film was improved by Al incorporation. The results of present work indicated that the electrospinning is a promising method to fabricate the nanostructured AZO films for use in electro-optical applications such as solar cells.

Keywords: AZO; Crystallography; Band gap; Electrospinning; Nano fibers; Photoluminescence;

Download English Version:

https://daneshyari.com/en/article/7913966

Download Persian Version:

https://daneshyari.com/article/7913966

<u>Daneshyari.com</u>