Accepted Manuscript

Facile and scalable synthesis of nanostructured Fe₂O₃ using ionic liquid-assisted ball milling for high-performance pseudocapacitors

Henry Kahimbi, Jae-Min Jeong, Do Hyun Kim, Jung Won Kim, Bong Gill Choi

PII: \$1293-2558(18)30505-3

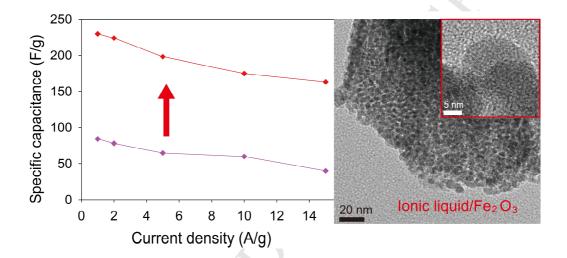
DOI: 10.1016/j.solidstatesciences.2018.07.017

Reference: SSSCIE 5733

To appear in: Solid State Sciences

Received Date: 2 May 2018
Revised Date: 3 July 2018
Accepted Date: 24 July 2018

Please cite this article as: H. Kahimbi, Jae–Min. Jeong, D.H. Kim, J.W. Kim, B.G. Choi, Facile and scalable synthesis of nanostructured Fe₂O₃ using ionic liquid-assisted ball milling for high-performance pseudocapacitors, *Solid State Sciences* (2018), doi: 10.1016/j.solidstatesciences.2018.07.017.


This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Graphical abstract

Ionic liquid-assisted ball milling of iron precursors in the absence of any reagent produced the scalable production of crystalline Fe_2O_3 with a favourable morphology for supercapacitor applications, showing high specific capacitance, high rate capability, and excellent cycle life.

Download English Version:

https://daneshyari.com/en/article/7914124

Download Persian Version:

https://daneshyari.com/article/7914124

<u>Daneshyari.com</u>