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a b s t r a c t

Thermodynamic modeling of fluids (liquids and gases) uses mostly series expansions which diverge at
low temperatures and do not fit to the behavior of metastable quenched fluids (amorphous, glass like
solids). These divergences are removed in the present approach by the use of reasonable forms for the
“cold” potential energy and for the thermal pressure of the fluid system. Both terms are related to the
potential energy and to the thermal pressure of the crystalline phase in a coherent way, which leads to
simpler and non diverging series expansions for the thermal pressure and thermal energy of the fluid
system. Data for solid and fluid argon are used to illustrate the potential of the present approach.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

A good representation of thermodynamic data for fluids (liquids
and gases) started with the famous van der Waals equation [1],
which contains one temperature independent term for the attrac-
tive potential energy and a second term for the temperature
dependent kinetic energy of an ideal gas in a restricted space. In
terms of pressure there is a temperature independent (cold)
attractive pressure and a repulsive thermal pressure. More recent
thermodynamic models use however most commonly viral type
series expansions [2], some times with exponential damping fac-
tors, and a large number of adjustable coefficients (up to 84 in IAPS-
84 [3]) or even different sets of 15 coefficients to represent the
equation of state (EOS) for lower and higher ranges in pressure and
temperature [4]. These large numbers of coefficients are needed,
because these forms do not model correctly the potential energy
and cold pressure with the effect that they diverge outside the
range of the fitted data, most seriously at low temperatures, but
also at high densities. Although one of the series expansions [5]
includes a term for the “cold” pressure, the other terms add di-
vergences at low temperatures, which require again a large number

of coefficients for accurate modeling.
Since one expects that metastable amorphous glassy states of

quenched fluids at low temperatures as well as the states of fluids
under very strong compression close to the melting line show
similarities to the neighboring crystalline solid phases I propose to
start also for the fluid phase from a potential energy (and cold
pressure), with some correlations to the static lattice energy of the
solid and add a non diverging series expansion only for the
remaining thermal pressure of the fluid. This approach follows
closely the thermodynamic modeling of solids, where the EOS for
“regular” solids are very well understood even for extremely wide
ranges in pressure [6e8].

2. The model

Since I would like to present a coherent picture for the modeling
of the solid and fluid phases of “simple” crystalline materials (with
no phase transitions in the range of interest) I may recall that EOS of
these simple solids are very well represented over extremely wide
ranges in pressure by an “adapted polynomial expansion” (APL),
which interpolates between lower pressures and the well under-
stood Fermi-gas behavior at extremely high pressures. In second
order we have [6e8].E-mail address: holzapfel@physik.upb.de.
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for the linear compression. Ko represents the

bulk modulus at ambient pressure for the given temperature. co ¼
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3 ,ln
�

Z
Vo

�
depends on the total electron den-

sity Z/Vo at ambient pressure, the parameter aFG¼ 0.02337 GPa nm5

takes care of the correct limiting behavior at very strong
compression, c2 cares for the pressure derivative of the bulk
modulus Kso (at ambient pressure): c2 ¼ 3

2 ,ðKso� 3Þ� co. Thereby
the dependence of c2 on co provides very small values of c2 for
“ideal solids” [6]. For the elements, Z is just the atomic number and
Vo the atomic volume. When Vo refers to the specific volume and Z
to the total number of electrons per Mole, one needs in addition the
molar massM to apply the AP2 formwith a total of 5 parameters: Z,
M, Vo, Ko, Kso.

The dominant contribution to the thermal pressure of crystal-
line solids is very well represented by the Grüneisen-Debye
approximation [9e11]:

pSthðV ; TÞ ¼ gðVÞ
V

,USthðV ; TÞ

The Grüneisen parameter gðVÞ ¼ �d lnðTDðVÞÞ=d lnðVÞ de-
creases smoothly under pressure and represents the volume
dependence of the Debye temperature TD(V) in the Grüneisen
approximation for the thermal energy USth(T/TD(V)). From the
many different forms for the volume dependence of the Grüneisen
parameter [12] I use here the form [13]:

gðVÞ ¼ g∞þ ðgo� g∞Þ$
�
V
Vo

� go$Go
go�g∞

Higher order contributions for phonon dispersion, anharmo-
nicity and defects lead to deviations from the Grüneisen model at
higher temperatures, and are well understood [11], but are not
needed here. The classical Grüneisen approximation does not
include the quantum corrections, which dominate at temperatures
below TD(V) and enter into the present form for the internal energy
USth(T,V).

For the modeling of the fluid phase I assume now that the po-
tential energy or the isotherm for compression of the cold, amor-
phous, or glassy fluid must show some resemblance to the behavior
of the crystalline solid. The disorder in the amorphous solid is ex-
pected to “smeared out” the potential energy in such a way that the
potential minimum becomes broader and weaker than in the cor-
responding crystalline state. This means that the initial volume for
the quenched fluid or amorphous solid should by larger than for the
crystalline solid: VFo> VSo. For the bulk modulus we expect
KFo< KSo, and values for parameters cFo and cF2 have to be
adjusted correspondingly. F denotes thereby parameters for the
fluid state and S for the crystalline solid also with respect to the
previously given form for co and c2. Since the APL-form was
designed for solids under strong compression, it does not repro-
duce the region of negative pressures or large expansion perfectly.
Its exponential “screening” factor falls of more rapidly than the
dispersion forces typical for “simple” atomic fluids. These consid-
erations lead to the use of a Mie-Grüneisen form [14] for the
attractive part in the potential energy of the fluid phase and to the
corresponding form for the pressure:
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whereby a smooth switching at V¼Vo from pMie to pAP2 is provided

by the use of the same parameters Vo, Ko, and Kso for both forms.
This means that the resulting forms for the cold pressure of the
crystalline solid pSC(V,VSo,KSo,KSSo) and for the (extrapolated) cold
pressure of the amorphous states pFC(V,VFo,KFo,KFso) have the
same analytical form and differ only in the parameters for the zero
pressure values of the volume, bulk modulus, and its pressure de-
rivative with the same values for the electron number Z and the
molar mass M. This means that we have only 3 additional param-
eters for the EOS of the cold fluid.

The theoretical modeling of the thermal pressure for fluids is
quite intriguing. Contributions from vibrational, librational, trans-
lational motion as well as from vacancies and cluster formation can
not be separated easily. Therefore one needs a reasonable series
expansion, which fits asymptotically to the ideal gas behavior at
low densities and approaches a solid like behavior under strong
compression. Theses considerations lead at first to the following
form for the thermal pressure of the fluid:
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with temperature dependence in the functions

BnðT ;Bn1;Bn2Þ ¼ ð1þ Bn1þ Bn2Þ
.
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If I take only three terms n¼ 1, 2, 3 of the volume dependence,

the conditions for the critical isotherm at the critical point,
pF(Vc,Tc)¼ pc, KF(Vc,Tc)¼ 0, and KFs(Vc,Tc)¼ 0, and the given values
for pc, Tc, and Vc result in the following relations for the coefficients
a1, a2, and a3:

a1 ¼ Vc
2$R$Tc

$½12$ðpc� pFCcÞ þ 7$KFCcþ KKFCsc� � 3

a2 ¼ �Vc
2$R$Tc

$½8$ðpc� pFCcÞ þ 6$KFCcþ KKFCsc� þ 3
2

a3 ¼ Vc
6$R$Tc

$½6$ðpc� pFCcÞ þ 5$KFCcþ KKFCsc� � 1
3

where pFCc, KFCc, and KFCsc are the values of the pressure, bulk
modulus and its pressure derivative of the hypothetical zero tem-
perature isotherm at Vc. I should point out that these values depend
on the parameters VFo, KFo, Kfso, which have to be determined by
additional constrains given by the volume of the fluid along the
melting curve This means that I have the 3 parameters VoF, KoF,
KsoF,which enter into the fit of the coefficients a1, a2, and a3, and at
lease the additional 3 parameters B11, B21, B31 when I fit the EOS
data along the melting curve.

When data for the volume of the fluid along the melting curve
are missing, EOS data for the solid can provide reasonable esti-
mates. It is clear that this first order model with only 6 parameters
to be fitted to experimental data gives only first estimates for the
EOS of the fluid over wide ranges in pressure and temperature.
However the present approach has good potential for future re-
finements, when more data are available. As a first test of the
present model and its implication for the interpretation of exper-
imental data I analyze data for argon.

3. Test of the model with data for argon

Asmost important input I use at first data for the critical point of
argon: pc ¼ 4.898MPa, Tc ¼ 150.85 K, and Vc ¼ 1.872 cm3/g from the
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