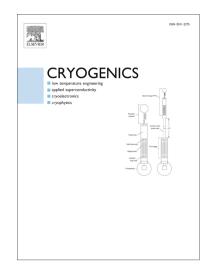
Accepted Manuscript

In-orbit performance of a helium Dewar for the soft X-ray spectrometer onboard ASTRO-H

Seiji Yoshida, Mikio Miyaoka, Ken'ichi Kanao, Shoji Tsunematsu, Kiyomi Otsuka, Shunji Hoshika, Katsuhiro Narasaki, Kazuhisa Mitsuda, Noriko Yamasaki, Yoh Takei, Ryuichi Fujimoto, Yuichiro Ezoe, Yoichi Sato, Atsushi Okamoto, Hirofumi Noda, Michael DiPirro, Peter Shirron


PII: S0011-2275(17)30219-9

DOI: https://doi.org/10.1016/j.cryogenics.2018.02.003

Reference: JCRY 2784

To appear in: *Cryogenics*

Received Date: 7 July 2017 Revised Date: 31 January 2018 Accepted Date: 5 February 2018

Please cite this article as: Yoshida, S., Miyaoka, M., Kanao, K., Tsunematsu, S., Otsuka, K., Hoshika, S., Narasaki, K., Mitsuda, K., Yamasaki, N., Takei, Y., Fujimoto, R., Ezoe, Y., Sato, Y., Okamoto, A., Noda, H., DiPirro, M., Shirron, P., In-orbit performance of a helium Dewar for the soft X-ray spectrometer onboard ASTRO-H, *Cryogenics* (2018), doi: https://doi.org/10.1016/j.cryogenics.2018.02.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

In-orbit performance of a helium Dewar for the soft X-ray spectrometer onboard ASTRO-H

Seiji Yoshida ^{a*}, Mikio Miyaoka ^a, Ken'ichi Kanao ^a, Shoji Tsunematsu ^a, Kiyomi Otsuka ^a, Shunji Hoshika ^a, Katsuhiro Narasaki ^a, Kazuhisa Mitsuda ^b, Noriko Yamasaki ^b, Yoh Takei ^b, Ryuichi Fujimoto ^c, Yuichiro Ezoe ^d, Yoichi Sato ^e, Atsushi Okamoto ^e, Hirofumi Noda ^f, Michael DiPirro ^g, Peter Shirron ^g

Abstract

ASTRO-H was an X-ray astronomy satellite that the Japan Aerospace Exploration Agency (JAXA) developed to study the evolution of the universe and physical phenomena yet to be discovered. The primary scientific instrument of ASTRO-H was the Soft X-ray Spectrometer (SXS). Its detectors were to be cooled to 50 mK using a complex cryogenic system with a multistage adiabatic demagnetization refrigerator (ADR) developed by the National Aeronautics and Space Administration (NASA), and a cryogenic system developed by Sumitomo Heavy Industries, Ltd. (SHI). SHI's cryogenic system was required to cool the ADR's heatsink to 1.3 K or less in orbit for three years or longer. To meet these requirements, SHI developed a hybrid cryogenic system consisting of a liquid helium tank, a 4K Joule-Thomson cooler, and two two-stage Stirling coolers.

ASTRO-H was launched from Tanegashima Space Center on February 17, 2016. The initial operation of the SXS cryogenic system in orbit was completed successfully. The cooling performance was as expected and could have exceeded the lifetime requirement of three years.

This paper describes results of ground tests, results of top-off filling of superfluid liquid helium just before launch, and cooling performance in orbit.

Keywords: Space cryogenics, Cooling system, Joule-Thomson cooler, Stirling Cooler, ASTRO-H

^a Sumitomo Heavy Industries, Ltd. 5-2 Soubiraki-cho, Niihama, Ehime 792-8588, Japan

^b Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan

^c Faculty of Mathematics and Physics, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan

^d Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan

^e Aerospace Research and Development Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan

^fNishina Center, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan (Present address: Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiazaaoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan)

^gNASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA

Download English Version:

https://daneshyari.com/en/article/7915585

Download Persian Version:

https://daneshyari.com/article/7915585

<u>Daneshyari.com</u>