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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract

To estimate fatigue loads of wind turbines via neural networks, costly load measurements are needed for training. Thus, our aim
was to assess the minimum needed size of the training sample. We focused on the prediction of flapwise blade root bending
moments with a neural network of eight inputs. Next to statistical testing of the training sample size, their representativeness
compared to a one-year measurement as well as seasonal effects were investigated. Our results showed that training samples of
about 2016 records of 10-minute statistics are representative and enable a reliable prediction independent from seasonal effects.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of SINTEF Energi AS.
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1. Introduction1

The lifetime of a wind turbine can be estimated in two ways. First, theoretically based on the design parameters2

according to a standard [1], and secondly, practically by measuring the loads during operation, e.g. for certification3

[2] and extrapolation to the design life. While the first approach is used in modelling the wind turbine, the second4

approach enables an assessment of the actual applied loads. However, the latter has two facets; on the one hand it is5

limited by the complexity and cost of handling extra measurements [3], on the other hand it enables the optimisation6

of the operation and maintenance of the wind turbine.7

Thus, prior research efforts have focused on estimating fatigue loads with existing 10-minute statistics of Supervi-8

sory Control and Data Acquisition (SCADA) signals using neural networks (NN) [3–6]. Thereby, a neural network9

is trained with a set of load measurements and SCADA signals. Afterwards, the trained network is able to predict10

the loads with SCADA signals solely. Smolka et. al [5] and Vera-Tudela [6] improved this method by reducing the11

number of input variables of the neural network by selecting the most relevant ones. Furthermore, Smolka et al. [5]12

demonstrated that a training sample of half a month of measurement data taken randomly from one year measurement13

period, already enables a reliable prediction of loads.14

However, to reduce costs for training of the neural network, the actual needed length of consecutive load measure-15
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ments is decisive. Thus, our objective in this case study is to assess the minimum needed length of consecutive load16

measurements by statistical testing of different training sample sizes over a period of one year. Next to the prediction17

accuracy of the neural network, the time dependence of the training samples is evaluated to investigate the influence18

of seasonal effects. Furthermore, the representativeness of the training samples is examined to validate the processed19

training sample sizes.20

Within this paper, the term sample is meant to be understood in sense of statistics where a sample represents a set of21

data selected from a statistical population, here one year measurements. The term training sample refers to the sample22

used to train the neural network for prediction. In contrast, the term test sample is associated with all data measured in23

one year except the records of the training sample. A sample consists of a certain number of records, here 10-minute24

statistics of SCADA signals or load measurements.25

Nomenclature

DEL damage equivalent load
FNN feedforward neueral network
NN neural network
SCADA supervisory control and data acquisition

26

2. Methods27

The measurements were recorded in the offshore wind farm EnBW Baltic 1 which is located in the Baltic Sea28

13 km north of the island Darß. It consists of 21 Siemens Wind Power 2.3-93 wind turbines with a total power of29

48.3 MW. For this paper data from two turbines B01 and B08 are analysed. As shown in Fig. 1, B01 is located at the30

westerly boarder of the wind farm whilst B08 is located inside of it.31

The data were recorded in an one-year period from March 2013 to March 2014 and processed in 10-minute intervals.32

The 10-minute statistics of the SCADA signals were calculated based on 50 Hz measurements. Furthermore only the33

operational data were processed and filtered for erroneous records using the Hampel identifier [7]. Considering only34

the measurements during production mode 60.83% (32,062 records) of the total year were available for the turbine35

B01, abd 56.81% (29,943 records) for turbine B08, respectively. Next to SCADA signals of both turbines, the blade36

root flapwise bending moments of two blades of each turbines were measured. Based on these measurements, the37

damage equivalent loads (DELs) were calculated for each 10-minute time interval as presented in [7].38
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Fig. 1: Layout of the offshore wind farm EnBW Baltic 1.
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