Contents lists available at ScienceDirect

Journal of Physics and Chemistry of Solids

journal homepage: www.elsevier.com/locate/jpcs

Highly enhanced gas-sensing properties of indium-doped mesoporous hematite nanowires

H.D. Chen, K.L. Jin, P.F. Wang, J.C. Xu, Y.B. Han, H.X. Jin, D.F. Jin, X.L. Peng, B. Hong, J. Li, Y.T. Yang, J. Gong, H.L. Ge, X.Q. Wang^{*}

College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China

ARTICLE INFO	A B S T R A C T
A R T I C L E I N F O Keywords: Nanowires Nanocasting Indium dopant Gas-sensing properties	Mesoporous indium (In)-doped hematite (α -Fe ₂ O ₃) nanowires were synthesized with mesoporous SBA-15 silica as a hard template, and then the influence of In dopant on the microstructure and gas-sensing performance was investigated in detail. With characterization by transmission electron microscopy, X-ray diffraction, UV-vis spectroscopy, and nitrogen physisorption experiments, it was shown that the average grain size increased for up to 1 mol% In dopant and then decreased with increasing In dopant content, while the surface area changed in the inverse manner. Because of the low melting point of In, In acted as a fluxing agent and entered the α -Fe ₂ O ₃ lattice when the In content was low, and the average grain size increased. With higher In content, In precipitated out the lattice and existed at the grain boundary, and the grain size decreased. It is concluded that In in the lattice increased lattice distortion and In at the boundary increased the surface area and oxygen vacancies, which were both beneficial for improving the gas-sensing performance. The response of In-doped α -Fe ₂ O ₃ nanowires increased by about 30%–50% as compared with that of pure α -Fe ₂ O ₃ nanowires. The gas sensor based on 3 mol% In–doped α -Fe ₂ O ₃ nanowires exhibited the best gas response and a rapid response-recovery time toward ethanol at the ontimum temperature. Owing to the same valence. In dopant affected only the microstructure and

components of the α -Fe₂O₃ lattice, which was necessary to improve the gas-sensing behavior.

1. Introduction

Owing to their high sensor response, low fabrication cost, simple manufacturing process, and good process compatibility, gas sensors based on semiconducting metal oxides have been widely used in many fields, such as monitoring of dangerous gases and alarm in firefight [1–5]. Various wide-bandgap semiconductors, such as ZnO, SnO₂, NiO, WO₃, α -Fe₂O₃, and In₂O₃, have been used as gas sensors [6–13]. Because of its high electron mobility and excellent response for reaction with both oxidizing and reducing gases, the n-type semiconductor α -Fe₂O₃, with an energy gap of 2.1 eV, has been widely used to develop gas sensors. Gas sensors based α -Fe₂O₃ have been fabricated to detect many reducing gases (ethanol, acetone, H₂, CO, CH₂O, CH₃OH, and NO_x) [14–18]. However, for the high requirement of detection precision of pollution and dangerous gases, the shortcomings of α -Fe₂O₃-based sensors, such as the high operating temperature, low gas response, and low stability, gradually became evident.

The gas-sensing mechanism of semiconductors can be explained by the resistance change caused by the adsorption of oxygen and reaction with the target gas molecules on the surface. For n-type α -Fe₂O₃

* Corresponding author. Tel.: +86 571 86876157; fax: +86 571 28911371. *E-mail address:* wxqnano@cjlu.edu.cn (X.Q. Wang). nanostructures, the adsorbed oxygen ions extract electrons from the conduction band of the metal oxide to form an electron-depletion layer at the surface, which has a high-resistance state in air. When reducing gases are introduced, the adsorbed oxygen ions at the surface prefer to react with the reducing gas and reinject the electron into the conduction band. As a result, the electron-depletion layer disappears, and the resistance decreases in the target gas [19–21]. Therefore, these surface reactions depend directly on the oxygen vacancies on the surface and the reaction activation energy, which requires a larger specific surface area with more active centers at the surface and a lower activation energy [5,19].

Recently, research to improve the performance of gas sensors has been conducted in two directions: one involves fabricating sensors by use of nanostructures as a gas-sensing medium, and the other involves doping with metallic elements or heavy metals [20]. Compared with traditional nanostructures, one-dimensional metal oxide nanostructures exhibit excellent performance as gas sensors because of the huge specific surface area, high stability owing to good crystallinity, dimensions comparable to the extension of the depletion layer, possibility of surface functionalization, and so on. Various forms of metal oxide

Received 27 December 2017; Received in revised form 7 May 2018; Accepted 8 May 2018 Available online 09 May 2018

0022-3697/ © 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jpcs.2018.05.004

nanostructures, such as nanowires, nanorods, nanofibers, and nanotubes [5–8], have been developed as gas-sensing materials.

In addition, the applications of α -Fe₂O₃ nanostructures as gas sensors have been intensively studied [21–24]. For example, Ce-doped α -Fe₂O₃ nanotube sensors were reported to exhibit a high response to acetone at a low operating temperature [21]. La-doped α -Fe₂O₃ nanotube sensors exhibited a much higher response, better selectivity, and shorter response-recovery time toward 50 ppm acetone than pure α -Fe₂O₃ sensors [22]. Cu-doped α -Fe₂O₃ hierarchical microcube sensors exhibited a good response to 19–100 ppm ethanol, which was about three times higher than that of α -Fe₂O₃ nanostructures [20]. Besides, significant efforts have been made to improve the gas-sensing performance of α -Fe₂O₃ nanostructures by the doping of Ag, Zn, and Nd [23–25].

Indium (In), a transition metal, has proved to be an effective dopant element to improve the gas-sensing properties of semiconductor oxides [26–28]. However, the gas-sensing properties of In-doped α -Fe₂O₃ have rarely been reported. Previously, we studied the gas-sensing properties of mesoporous a-Fe₂O₃ nanowire bundles and dispersed a-Fe₂O₃ nanowires, showing the better gas-sensing performance of α -Fe₂O₃ nanowire bundles because of the larger surface area [10]. To further improve the gas-sensing properties of α -Fe₂O₃ nanowire bundles, element doping was considered one of the best choices. With the same valence as Fe³⁺, In was selected as the doping transition metal to investigate its influence on the gas-sensing performance. In this work, Indoped $\alpha\text{-}\text{Fe}_2\text{O}_3$ nanowires were synthesized by the nanocasting method using mesoporous SBA-15 silica as a hard template, and the influence of In dopant on the microstructure and morphology of the as-prepared α -Fe₂O₃ nanowires was investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis spectroscopy, and nitrogen physisorption experiments. Furthermore, the gas-sensing properties of the pure and In-doped α -Fe₂O₃ nanowires toward ethanol were investigated in detail.

2. Material and methods

All chemicals were of analytical grade and were used as purchased without any further purification. Ordered mesoporous SBA-15 silica templates were prepared by the method described previously [10]. In a typical nanowire preparation process, 8 mmol of $In(NO_3)_3$ ·5H₂O and Fe $(NO_3)_3$ ·9H₂O with different In/(Fe + In) molar percentages (0 mol%, 1 mol%, 3 mol%, and 5 mol%) and 1 g SBA-15 in sequence were dissolved and dispersed in ethanol, and then hexane was added. After fine powders had formed, the powders were calcined at 550 °C for 6 h. Then 2 M NaOH aqueous solution was added to remove the silica template, and all samples were filtered and washed with deionized water and ethanol, and then dried at 80 °C for 4 h.

The crystal structure of the as-prepared products was determined by XRD (XD-5A, Cu target, wavelength 0.154 nm, step 0.02°). The morphology of all samples was examined by means of TEM (JME-1200EX) and energy-dispersive spectroscopy (EDAX TEAM Apollo XL). BaSO₄ powder was used as the substrate material to obtain the UV–vis spectrum with a UV3600 spectrophotometer to deduce the bandgap of both samples. Nitrogen physisorption experiments were conducted at 77 K with a Micrometrics ASAP 2020 surface area and porosity analyzer. The Brunauer-Emmett-Teller (BET) surface areas were calculated for the relative pressure range from 0.06 to 0.2.

To measure the gas-sensing properties of mesoporous pure and Indoped α -Fe₂O₃ nanowires, the sensors were prepared in the following way: The same amount of each sample was mixed with several drops of deionized water in an agate mortar to form a homogeneous paste, which was then deposited on an alumina ceramic tube assembled with platinum wire electrodes for electrical contacts. The thus prepared gassensing device was aged at 300 °C for 5 days to increase the stability of the sensor. Then a Ni-Cr alloy wire was passed through the alumina ceramic tube and used as a heater by the tuning of the heating voltage. Gas-sensing tests were then performed with a WS-60 A gas-sensing measurement system, which is a static system that uses atmospheric air as the interference gas. The relative humidity was about 60%. The sensor response ($S = R_a/R_g$) was defined as the ratio of the sensor resistance in air (R_a) to that in the target gas (R_g). The response and recovery times were defined as the times required for a change in the resistance to reach 90% of the equilibrium value after the detected gas had been injected and removed, respectively [10].

3. Results and discussion

The XRD patterns of pure and In-doped α -Fe₂O₃ nanowires with different In dopant content (1 mol%, 3 mol%, and 5 mol%) are illustrated in Fig. 1. All the diffraction patterns showed the characteristic peaks corresponding to the phase structure $R\overline{3}c$ (167) according to JCPDS card no. 33-0664. No other phases containing In dopant were detected, indicating the lower In dopant or In dopant into the crystal α -Fe₂O₃ lattice. The curve of 1 mol% In-doped α-Fe₂O₃ nanowires was smoother than the curves of 3 mol% In–doped and 5 mol% In–doped α -Fe₂O₃ nanowires, which suggests a higher crystallization degree of 1 mol% In–doped α -Fe₂O₃. The average grain size and lattice constant were calculated with the Scherrer formula and the cubic crystal cell parameter formula from XRD data (Table 1) [32]. The grain size of pure α -Fe₂O₃ nanowires decreased from 23.7 nm for 1 mol% In dopant to 23.35 nm for 3 mol% In dopant and to 22.40 nm for 5 mol% In dopant. The lattice constant also decreased with increasing In^{3+} concentration. The variations of the average grain size and lattice constant depending on the doping concentration powerfully indicated that In replaced Fe ions in the lattice, as the ionic radius of In^{3+} (0.84 Å) is larger than that of Fe^{3+} (0.64 Å). Because of the low melting point of In, In acted as a

Fig. 1. X-ray diffraction patterns of α -Fe₂O₃ and In-doped α -Fe₂O₃ nanowires.

Table 1

The crystallite size and lattice constants of pure and In-doped $\alpha\mbox{-}Fe_2O_3$ nanowires.

Sample	Crystallite size (nm)	a (Å)	c (Å)
Pure α-Fe ₂ O ₃	22.95	5.0341	13.7221
1 mol% In-doped α-Fe ₂ O ₃	23.70	5.0354	13.8268
3 mol% In-doped α-Fe ₂ O ₃	23.35	5.0475	13.7352
5 mol% In-doped α-Fe ₂ O ₃	22.40	5.0367	13.7345

Download English Version:

https://daneshyari.com/en/article/7920043

Download Persian Version:

https://daneshyari.com/article/7920043

Daneshyari.com