FISEVIER

Contents lists available at ScienceDirect

Journal of Physics and Chemistry of Solids

journal homepage: www.elsevier.com/locate/jpcs

Synergism of 3D g-C₃N₄ decorated Bi₂WO₆ microspheres with efficient visible light catalytic activity

Xiaoming Gao*, Rong Zhang, Yanyan Shang, Jiao Fei, Feng Fu

Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yanan, Shaanxi, 716000, China

ARTICLE INFO

 $\label{eq:keywords:Photocatalysis} Fhotocatalysis $$G-C_3N_4/Bi_2WO_6$$ Matching of energy band Visible light$

ABSTRACT

g- C_3N_4 decorated Bi_2WO_6 microspheres with scales of $2.0 \sim 3.0\,\mu m$ were prepared via a hydrothermal method. The matching of energy band between g- C_3N_4 and Bi_2WO_6 facilitate the absorption visible light and the separation of electron-carrier. The morphology, constitute and optical properties of the as-prepared samples is confirmed by different characterization techniques, such as, XRD, XPS, EDS, SEM, UV-vis, and N_2 adsorption-desorption. The photocatalytic activities were assessed by the photodegradation of Methyl orange (MO) and phenol under visible light irradiation. The results indicated that the decoration of g- C_3N_4 evidently improves the photocatalytic activity of Bi_2WO_6 , and the content of g- C_3N_4 has significantly effect on the catalytic activity of Bi_2WO_6 . By comparison of other samples, 3 wt% g- C_3N_4/Bi_2WO_6 composites present an extraordinary enhanced photocatalytic activity for the photodegradation of MO and phenol under visible light. On the basis of the result and discussion, the possible mechanism of enhanced photocatalytic activity of g- C_3N_4/Bi_2WO_6 composites is proposed. It implies that the combination of g- C_3N_4 and Bi_2WO_6 provided synergistic photocatalytic activity via an efficient electron transfer process. Furthermore, the photocatalytic degradation of MO over g- C_3N_4/Bi_2WO_6 is promoted mainly by h^+ , and the same time *OH also plays a positive role in this degradation process.

1. Introduction

In recent years, semiconductor material has attracted comprehensive interest due to the photo-degradation of environmental pollutants and production of hydrogen from water under light irradiation [1-4]. However, many semiconductors can be excited only under ultraviolet light irradiation because of its relatively wide band gap and inefficient quantum yield, which hinders its further application in industrial process [5-8]. Up to date, a variety of strategies have been employed to improve the photocatalytic efficiencies of photocatalysts in the visible range by different modified methods, such as doped with nonmetal/ metal element [9,10]. Unfortunately, the methods used are not completely controlled. Moreover, these dopants may become recombination centers between photogenerated electrons and holes. Evidently, the expected methods are somewhat limited [11,12]. Therefore, to explore more efficient photocatalyst with visible light responsiveness and thermal stability is urgent and indispensable. In order to decrease the recombination of photogenerated electrons and holes, and promote the photocatalytical ability, some novel photocatalyst have been designed and fabricated by coupling a narrow band gap semiconductor with metal and/or other semiconductors [13-15]. Composites catalyts for the oxidative degradation of environmental pollutants or chemical conversions are well known for their efficiency where the photogenerated electron and holes photo-generated are driven effectively apart before recombination [16,17]. Therefore, the construction of semiconductor composites has proved to be an effective approach. Understanding the catalysis mechanism is vital for the design of new functional materials to be a part of an environmentally friendly technology. During the past few years, many important findings have been reported on the fabrication of semiconductor heterojunctions such as, AgBr-Ag-Bi₂WO₆ three component composites [18], Bi₂WO₆-TiO₂ hierarchical composites [19], SnO₂-TiO₂ photocatalysts [20], CuO|-CuBi₂O₄ composites [21], and so on. Despite a large number of encouraging versatile composite photocatalysts being available, there are still a few promising developments to designing and fabricating the semiconductor composite photocatalysts, while providing some stimulating perspectives on the future developments.

As an important simplest aurivillius oxide, Bi_2WO_6 has attracted increasing interest because of the photodecomposition of environmental pollutants and generation of hydrogen from water under light irradiation. However, there are three main drawbacks, which limit the photocatalytical ability of Bi_2WO_6 . Firstly, Bi_2WO_6 only exhibits photoabsorption properties from UV to visible light with wavelength shorter than about 450 nm. Secondly, the rapid recombination of

E-mail address: dawn1026@163.com (X. Gao).

^{*} Corresponding author.

photogenerated electrons - holes pairs and inefficient quantum yield seriously limits the light energy-conversion efficiency. Lastly, Bi₂WO₆ exhibits high dispersion in the solid-liquid system, which results in a difficult for its recovery [22-25]. Therefore, to improve these drawbacks, especially, to broaden the range of visible light responsiveness and enhance the separation of photogenerated carriers are important in enlarging the efficiency photocatalytic application. Graphitic C₃N₄ (g-C₃N₄) is another attractive and promising semiconductor with a small band gap of approximately 2.7 eV [26-28]. It is reported that g-C₃N₄ is suitable for photocatalytic reduction with conduction band(CB) position and photocatalytic oxidation with valence band(VB) position. Moreover, g-C₃N₄ could cause red shift of the photoabsorption wavelength, produce nonlinear optical responsiveness and enhance the oxidation and reduction capacity of other semiconductor, thus it has been used as coating on other semiconductor for visible light absorption and to improve the photochemical stability of the semiconductor, respectively [29-31]. Especially, the CB of g-C₃N₄ possesses smaller electropositive than the corresponding Bi₂WO₆, and the VB have more electronegative than that of Bi₂WO₆. In the g-C₃N₄/Bi₂WO₆ composites system, the photoinduced electrons tend to pass from the CB of g-C₃N₄ to the CB of Bi₂WO₆, meanwhile the photoinduced holes tend to pass from the VB of Bi₂WO₆ to the VB of g-C₃N₄ [32,33]. Thus, the formation of g-C₃N₄/Bi₂WO₆ composites with the efficiency separation and transfer of photogenerated carriers is more possible, and well-fabricated g-C₃N₄/Bi₂WO₆ composites could availably restrict the recombination of photogenerated carriers and effectively enhance the visible-light photocatalytic activity.

Although, the research of g-C₃N₄/Bi₂WO₆ is carried out, however, the research did not clearly present the influence of the synthesis conditions on the microstructure, crystallinity and activity of the catalysts [34,35]. Therefore, we intend to explore comprehensive correlation among the processing, structure and property of the g-C₃N₄/ Bi₂WO₆. Therefore, to further favor versatile photocatalytic material with visible light catalytic efficiency, we design and fabricate 3D hierarchical spherical g-C₃N₄/Bi₂WO₆ composites with basement on semiconductor band manipulation theory of p-n heterojunction. 3D spherical g-C₃N₄/Bi₂WO₆ composites were subsequently characterized by XRD, SEM, TEM, EDS and XPS. Methyl orange (MO) and phenol were available to evaluate the photocatalytic activity of the 3D spherical g-C₃N₄/Bi₂WO₆ composites under visible light irradiation. The experimental results demonstrated that g-C₃N₄ coated hierarchical Bi₂WO₆ represented remarkable enhanced photocatalytic activity for the degradation of MO and phenol. In addition, 3D spherical g-C₃N₄/ Bi₂WO₆ composites were high-stability and easy-recycle. Afterwards, the mechanism of photocatalytic activity of 3D spherical g-C₃N₄/ Bi₂WO₆ composites was also discussed based on the calculated energy positions of g-C₃N₄ and Bi₂WO₆.

2. Experimental section

2.1. Preparation

All the reagents were analytical grade. The typical preparation process of $g\text{-}C_3N_4/Bi_2WO_6$ composites is showed in the following way. The melamine was calcined at 250 °C for 1 h, and then at 550 °C for 2 h. After cooling naturally to room temperature, the sample was filtered off, washed with 0.1 M nitric acid solution and distilled water.

Afterwards, the sample was dried at 80 $^{\circ}$ C for 8 h. Thus, g-C₃N₄ samples

 $0.02\,\mathrm{mol}$ Bi(NO₃)₃·5H₂O were dissolved in $2.5\,\mathrm{mL}$ nitric acid (4 mol L⁻¹) and $7.5\,\mathrm{mL}$ distilled water, and then $10\,\mathrm{mL}$ Na₂WO₄ solution at a concentration of $0.002\,\mathrm{mol}\,\mathrm{L}^{-1}$ was added drop-wise to the solution under vigorous magnetic stirring at room temperature. In a typical preparation process, an amount of g-C₃N₄ samples was added to a mixture solution. The resulting solution was continuously stirred for 30 min in air, then transferred and sealed in a 100 mL Teflon liner

stainless vessel, which was maintained at 180 °C for 12 h. After naturally cooling to room temperature, the precipitate was filtered off, washed with distilled water and absolute ethyl alcohol. Afterwards, the precipitate was dried under vacuum at 80 °C in air for 8 h. Thus, the aimed samples were obtained, and the samples were named as 0.5 wt% g-C₃N₄/Bi₂WO₆, 1 wt% g-C₃N₄/Bi₂WO₆, 2 wt% g-C₃N₄/Bi₂WO₆, 3 wt% g-C₃N₄/Bi₂WO₆, 4 wt% g-C₃N₄/Bi₂WO₆, respectively.

3. Characterization

The phase and composition of the g-C₃N₄/Bi₂WO₆ composites were identified by X-ray diffraction (XRD) using monochromatized Cu K_{α} radiation under 40 kV and 100 mA and with the 20 ranging from 10° to 80° (Shimadzu XRD-7000). The morphologies and microstructures of the g-C₃N₄/Bi₂WO₆ composites were analyzed by the scanning electron microscope (SEM) (JEOL JSM-6700 F). The UV-vis diffuse reflectance spectrum (DRS) of the g-C₃N₄/Bi₂WO₆ composites was recorded with an UV-vis spectrophotometer (Shimadzu UV-2550) using an integrating-sphere accessory, BaSO₄ was used as a reflectance standard. The chemical state of constituent elements of the g-C₃N₄/Bi₂WO₆ composites was analyzed by EDS (Bulker Q73). X-ray photoelectron spectroscopy (XPS) analysis of the g-C₃N₄/Bi₂WO₆ composites was performed on a VG MultiLab2000 X-ray photoelectron spectrometer with a monochromatic Al K_{α} source. The specific surface area of the g-C₃N₄/Bi₂WO₆ composites was calculated by the Brunauer - Emmet -Teller (BET) method on the basis of nitrogen uptake measured at -192 °C (Micromeritics ASAP, 2010).

3.1. The visible ligh photocatalytic properties

Photocatalytic property of the g- C_3N_4/Bi_2WO_6 composites was evaluated by degradation of the phenol-containing (MB-containing) model wastewater at ambient temperature. A 400 W metal halide with a 400 nm cut-off filter was used as the visible light source. 250 mL of a phenol-containing solution of a desired concentration (10 mgL $^{-1}$) was added to a quartz tube that contained 200 mg of the g- C_3N_4/Bi_2WO_6 composites at a constant temperature of 25 °C. The tubes were agitated at 140 rpm continuous magnetically in the dark for 2 h to assure the adsorption-desorption equilibrium between the g- C_3N_4/Bi_2WO_6 composites and the target organic pollutant. After certain contact time, the g- C_3N_4/Bi_2WO_6 composites were separated from the phenol-containing solution by centrifugation. The phenol(MB) content in the supernatant was determined using a UV–Vis spectrophotometer (Shimadzu, UV-2550, Japan) in the spectrophotometric method.

4. Result and discussion

4.1. XRD, EDS and XPS analysis

The XRD patterns of the as-prepared samples are shown in Fig. 1. From Fig. 1, It can be see that the all of the as-prepared composites are well crystallized. The diffraction peaks at 20 of 28.6°, 33.1°, 47.3°, 56.1°, 58.4°, 68.5°, 76.2°, 78.4° can be indexed to tetragonal Bi₂WO₆ (JCPDS No. 26–1044; a = 5.48 Å, b = 5.48 Å, c = 11.5 Å), corresponding to the indices of (103), (200), (220), (303), (107), (400), (109) and (307) planes, respectively [36]. Moreover, the diffraction peaks of g-C₃N₄ and other impurities are not observed in these Bi₂WO₆, 0.5 wt% g-C₃N₄/Bi₂WO₆, 1 wt% g-g-C₃N₄/Bi₂WO₆ and 2 wt% g-C₃N₄/ Bi₂WO₆ samples. The reason can be ascribed to low weight loading of g-C₃N₄ on the surface of the Bi₂WO₆. These phenomena can be found in the preparation of the other kinds of semiconductor composite. For example, it was difficult to find the characterization peaks of g-C₃N₄ with less than 1:1.33 of weight ratio of g-C₃N₄ to Ag₂O in the g-C₃N₄/ Ag₂O [37]. The characterization peaks of metallic Ag was not examined in the Ag/g-C₃N₄ heterostructures with low Ag doping amount [38]. However, the diffraction peaks of g-C₃N₄ appear and are identified

Download English Version:

https://daneshyari.com/en/article/7920049

Download Persian Version:

https://daneshyari.com/article/7920049

<u>Daneshyari.com</u>