Accepted Manuscript

 ${\rm Zn}^{2+}$ in-situ substitution behavior during the formation of BaTiO $_3$ coatings from plasma-sprayed powders collected in liquid nitrogen

Zhe Liu, Zhiguo Xing, Haidou Wang, Zifan Xue, Shuying Chen, Xiufang Cui, Guo Jin

PII: S0022-3697(17)31282-9

DOI: 10.1016/j.jpcs.2017.12.049

Reference: PCS 8356

To appear in: Journal of Physics and Chemistry of Solids

Received Date: 15 July 2017

Revised Date: 22 December 2017

Accepted Date: 23 December 2017

Please cite this article as: Z. Liu, Z. Xing, H. Wang, Z. Xue, S. Chen, X. Cui, G. Jin, Zn²⁺ in-situ substitution behavior during the formation of BaTiO₃ coatings from plasma-sprayed powders collected in liquid nitrogen, *Journal of Physics and Chemistry of Solids* (2018), doi: 10.1016/j.jpcs.2017.12.049.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

${\rm Zn}^{2+}$ in-situ substitution behavior during the formation of ${\rm BaTiO_3}$ coatings from plasma-sprayed powders collected in liquid nitrogen

 $Zhe\ Liu^{1,2}, Zhiguo\ Xing^2, Haidou\ Wang^{1,2^*}, Zifan\ Xue^{2,3}, Shuying\ Chen^2, Xiufang\ Cui^1, Guo\ Jin^1, Chen^2, Xiufang\ Cui^2, Chen^2, Chen^2,$

- 1. Institute of Surface/Interface Science and Technology, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- 2. National Key Laboratory for Remanufacturing, Armored Forces Engineering Institute, Beijing, 100072, China
- 3. School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China

Abstract: The dielectric performance of BaTiO₃ ceramic coatings is enhanced significantly by the addition of ZnO. In this study, the maximum relative permittivity value ($\varepsilon_r \approx 923$) was measured in BaTiO₃ coatings with ZnO added at 6 wt.%. The Curie temperature (T_c) was in the range of 111°C to 121°C for all of the ZnO-modified BaTiO₃ coatings. T_c shifted to low temperatures as the ZnO content increased. Detailed analyses were performed to determine the phase composition and optical band gaps of powders collected in liquid nitrogen, which showed that the Zn²⁺ ions were incorporated into the BaTiO₃ lattice where they substituted into the Ti^{4+} sites, and the composite powders (BaTiO₃ + 6 wt.% ZnO) tolerated high temperatures in the plasma beam. In addition, some residual Zn accumulated in the grain boundary in the form of ZnO. X-ray diffraction and Raman spectroscopy showed that the substitution led to changes in the compositional and structural properties. The red shift in the optical band gap of BaTiO₃ indicated that the ZnTi defects caused by the dopants acted as carriers in the doped BaTiO₃ coatings.

Key words: Air plasma spray, BaTiO₃, Dielectric performance, Liquid nitrogen, ZnO.

1. Introduction

Air plasma spraying is a highly efficient method for obtaining "bulk-like" thickness hard coatings for various electrical applications [1, 2]. Perovskite structure ceramics exhibit excellent electrical performance characteristics due to their unique crystal structure. Coatings based on perovskite structures such as lead zirconium titanate [3], barium titanate (BaTiO₃) [4, 5], potassium-sodium niobate [6], and lead magnesium niobate [7] have been successfully deposited via air plasma spraying in recent years. BaTiO₃ is an important lead-free dielectric material, which might be suitable for various applications after deposition using the plasma spraying process. BaTiO₃-based ceramic materials have attracted much attention due to their unique ferroelectric, piezoelectric, dielectric, and optical properties, and they are now used widely in various applications such as capacitors, sensors, and electronic and photocatalytic applications.

Barium titanate and its doped variants have been applied extensively due to their excellent ferroelectric, piezoelectric, and thermoelectric properties [8, 9]. Acceptor and donor dopants can significantly change the concentration of carriers to affect the dielectric performance, especially the dielectric loss. The incorporation of extra ions in the primary lattice of BaTiO₃ is expected to

E-mail address: wanghaidou@aliyun.com

^{*} Corresponding author at: National Key Laboratory for Remanufacturing, Armored Forces Engineering Institute Beijing, China; Tel.: 86-10-66718541

Download English Version:

https://daneshyari.com/en/article/7920497

Download Persian Version:

https://daneshyari.com/article/7920497

<u>Daneshyari.com</u>