Accepted Manuscript

Facile bulk preparation and structural characterization of agglomerated γ -Fe $_2$ O $_3$ /SiO $_2$ nanocomposite particles for nucleic acids isolation and analysis

Valentin Natarov, Dzmitry Kotsikau, Vladimir Survilo, Andrei Gilep, Vladimir Pankov

PII: S0254-0584(18)30676-X

DOI: 10.1016/j.matchemphys.2018.08.011

Reference: MAC 20854

To appear in: Materials Chemistry and Physics

Received Date: 03 April 2018

Accepted Date: 07 August 2018

Please cite this article as: Valentin Natarov, Dzmitry Kotsikau, Vladimir Survilo, Andrei Gilep, Vladimir Pankov, Facile bulk preparation and structural characterization of agglomerated γ-Fe₂O₃ /SiO₂ nanocomposite particles for nucleic acids isolation and analysis, *Materials Chemistry and Physics* (2018), doi: 10.1016/j.matchemphys.2018.08.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Facile bulk preparation and structural characterization of agglomerated γ -Fe₂O₃/SiO₂ nanocomposite particles for nucleic acids isolation and analysis

Valentin Natarov^{a,b*}, Dzmitry Kotsikau^a, Vladimir Survilo^b, Andrei Gilep^c, Vladimir Pankov^a

^a Department of Chemistry, Belarusian State University, 4 Nezavisimosti Av., 220030 Minsk, Belarus

^b JSC «GenTerra», 9/1 Godovikova St., 129085 Moscow, Russian Federation

^c Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5/2 Kuprevicha St., 220141 Minsk, Belarus

*Corresponding author: Valentin Natarov. JSC «GenTerra», 9/1 Godovikova St., 129085 Moscow, Russian Federation, E-mail: v.natarov@genterra.ru, phone number: +7 495 721 29 70

Abstract

Two facile methods for the bulk preparation of γ-Fe₂O₃/SiO₂ agglomerated magnetic nanocomposite (MNC) particles for magnetic separation of nucleic acids (NAs) are compared together. Different silica coating approaches were used for iron oxide silanization: Stöber method and sodium silicate dense-liquid process. Additional thermal treatment at 750 °C provided thermal and structural stability to the MNCs. The structural characteristics, magnetic properties, size and morphology of the synthesized materials have been studied. To validate the synthesized materials, the MNCs were used for the isolation of nucleic acids from human buccal epithelium cells and two human biosamples (whole blood and plasma) with addition of pathogenic viruses. It was shown that the prepared near-micron sized agglomerates of superparamagnetic ($M_s = 40-45 \text{ emu/g}$) γ -Fe₂O₃/SiO₂ MNC particles are fully coated with silica. The synthesized materials combine the advantages of nanosized (superparamagnetism) and micron-sized objects (separability, average precipitation stability). Both types of the MNCs described in the paper have demonstrated similar effectiveness of NAs isolation, comparable with commercial MAGNO-sorb® total NAs isolation kit (InterLabService, Russia) used as a reference. The appropriate structural stability, high magnetization and proper purity of the isolated NAs (A260/A280 ratio near 1.9) make the studied MNCs promising materials for magnetic bioseparation.

Highlights

- γ-Fe₂O₃/SiO₂ nanocomposites were synthesized via two sol-gel methods
- Silanization and calcination provide structural stability to the obtained materials
- The nanocomposites have demonstrated similar effectiveness of DNA isolation
- The isolated nucleic acids are pure enough to be used for molecular biology

Keywords: magnetic particles; bioseparation; silica; nucleic acids; sol-gel synthesis.

Download English Version:

https://daneshyari.com/en/article/7921143

Download Persian Version:

https://daneshyari.com/article/7921143

<u>Daneshyari.com</u>