Accepted Manuscript

Surfactant-assisted Titanium dioxide/graphene Composite for Enhanced Conductivity

MATERIALS
CHEMISTRY AND
PHYSICS
PRUNNS
PARABLES CENTER
COMMUNICATIONS
COMMUNICATI

Lin LIU, Ying LI, Tao E, Zhigang JIANG, Shuyi YANG, Jiasheng XU, Jianhua QIAN

PII: S0254-0584(18)30481-4

DOI: 10.1016/j.matchemphys.2018.05.075

Reference: MAC 20691

To appear in: Materials Chemistry and Physics

Received Date: 14 March 2018

Accepted Date: 29 May 2018

Please cite this article as: Lin LIU, Ying LI, Tao E, Zhigang JIANG, Shuyi YANG, Jiasheng XU, Jianhua QIAN, Surfactant-assisted Titanium dioxide/graphene Composite for Enhanced Conductivity, *Materials Chemistry and Physics* (2018), doi: 10.1016/j.matchemphys.2018.05.075

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Surfactant-assisted Titanium dioxide/graphene Composite for

Enhanced Conductivity

Lin LIU^{1*}, Ying LI¹, Tao E¹, Zhigang JIANG², Shuyi YANG¹, Jiasheng XU¹, Jianhua QIAN¹

Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of

Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, Liaoning, China

² Jinzhou Titanium Industry Co., Ltd., Jinzhou 121013, Liaoning, China

Abstract

Titanium dioxide/graphene (TiO₂/G) was synthesized by a simple method through adding cationic

surfactant to assist the stabilization of rutile TiO₂ in aqueous solutions and facilitate the electrostatic

assembly of binding with surface of graphene. TiO2/G materials were used for investigation of its

conductivity and dispersibility. The TiO2/G was showed significantly to enhance in conductivity and

dispersibility after adding cetyltrimethylammonium bromide (CTAB). The good performance may be

attributed to increasing TiO2 to uniformly distribute on the surface of graphene in the presence of

CTAB. The TiO₂/G composite was characterized by Zeta potential, Fourier transformed infrared spectra

(IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Electrochemical impedance

spectroscopy (EIS), respectively. The CTAB does not affect the crystalline structure of TiO₂ and

graphene. When CTAB is 30%wt of TiO₂ and graphene is 7%wt of TiO₂ that the resistivity of TiO₂/G is

measured as 2.4 Ω ·cm. The dispersion of TiO₂/G can be kept for 24 h without precipitation. EIS showed

that the TiO₂/G with 30%wt of CTAB had the lowest electrical resistance, which tended to be consistent

with the results of the measured resistivity. The results showed that the best conductivity and

dispersibility of the TiO₂/G composite with CTAB in this experiment.

Keywords: Graphene; TiO₂; Conductivity; Dispersibility

* Corresponding author. Tel: +86 13940608778; E-mail: liulin@bhu.edu.cn

1/14

Download English Version:

https://daneshyari.com/en/article/7921253

Download Persian Version:

https://daneshyari.com/article/7921253

<u>Daneshyari.com</u>