## **Accepted Manuscript**

Fabrication of  ${\rm Al_2O_3}$  Nanopores/SnO $_2$  and its application in photocatalytic degradation under UV irradiation

MATERIALS
CHEMISTRY AND
PHYSICS

MULTING
COMMINGATIONS
COM

Sevgi Ateş, Evrim Baran, Birgül Yazıcı

PII: S0254-0584(18)30322-5

DOI: 10.1016/j.matchemphys.2018.04.052

Reference: MAC 20547

To appear in: Materials Chemistry and Physics

Received Date: 11 December 2017

Revised Date: 04 April 2018

Accepted Date: 14 April 2018

Please cite this article as: Sevgi Ateş, Evrim Baran, Birgül Yazıcı, Fabrication of Al<sub>2</sub>O<sub>3</sub> Nanopores /SnO<sub>2</sub> and its application in photocatalytic degradation under UV irradiation, *Materials Chemistry and Physics* (2018), doi: 10.1016/j.matchemphys.2018.04.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fabrication of Al<sub>2</sub>O<sub>3</sub> Nanopores/SnO<sub>2</sub> and its application in photocatalytic

degradation under UV irradiation

Sevgi Ateş<sup>a,1</sup>, Evrim Baran<sup>b</sup>, Birgül Yazıcı<sup>a</sup>

<sup>a</sup>Çukurova University, Science and Letters Faculty, Department of Chemistry, Adana 01330, Turkey

<sup>b</sup>Kilis 7 Aralık University, Science and Letters Faculty, Department of Chemistry, Kilis 79000, Turkey

**Abstract** 

In the present work, the photocatalytic degradation methyl orange (MO) by Al<sub>2</sub>O<sub>3</sub>-NP/SnO<sub>2</sub>

was investigated under UV light irradiation. For this purpose, the Al<sub>2</sub>O<sub>3</sub>-NP electrode was

synthesized under the suitable conditions by two-step anodization technique and Al<sub>2</sub>O<sub>3</sub>-

NP/SnO<sub>2</sub> electrodes were prepared by sol-gel technique. The structure and morphology of the

electrode were characterized by field-emission scanning electron microscope (FE-SEM),

energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The FE-SEM

results indicate that pore diameter and thickness of Al<sub>2</sub>O<sub>3</sub>-NP/SnO<sub>2</sub> are 65.92 nm and 23.75

μm, respectively. EDX analysis shows that Al<sub>2</sub>O<sub>3</sub>-NP/SnO<sub>2</sub> electrode contains 12.56 (wt.) %

Sn and 44.43% O. The effect of some parameters, such as initial MO concentration, initial

pH, temperature, irradiation area and reusability were determined. Kinetic analyses indicate

that the photodegradation process of MO obeys the pseudo-first-order kinetic model.

Additionally, thermodynamic parameters such as Ea,  $\Delta H$ ,  $\Delta S$  and  $\Delta G$  were calculated. The

activation energy was determined to be 21.77 kJ/mol. This photocatalyst with good

photocatalytic activity and a large surface area exhibits an effective potential in the treatment

of wastewater.

<sup>1</sup>Corresponding author. Tel.: +90 322 338 69 68; fax: +90 322 338 6070

E-mail address: sevgiiatess@gmail.com (S. Ates).

## Download English Version:

## https://daneshyari.com/en/article/7921411

Download Persian Version:

https://daneshyari.com/article/7921411

<u>Daneshyari.com</u>