Accepted Manuscript

Influence of the various synthesis methods on the ZnO nanoparticles property made using the bark extract of *Terminalia arjuna*

MATERIALS
CHEMISTRY AND
PHYSICS
INCLUDING
COMMUNICATION

Including the property of the party of

Raunak Saha, Subramani Karthik, Kolathupalayam Shanmugam Balu, Rangaraj Suriyaprabha, Palanisamy Siva, Venkatachalam Rajendran

PII: S0254-0584(18)30023-3

DOI: 10.1016/j.matchemphys.2018.01.023

Reference: MAC 20295

To appear in: Materials Chemistry and Physics

Received Date: 08 June 2017

Revised Date: 21 November 2017

Accepted Date: 06 January 2018

Please cite this article as: Raunak Saha, Subramani Karthik, Kolathupalayam Shanmugam Balu, Rangaraj Suriyaprabha, Palanisamy Siva, Venkatachalam Rajendran, Influence of the various synthesis methods on the ZnO nanoparticles property made using the bark extract of *Terminalia arjuna*, *Materials Chemistry and Physics* (2018), doi: 10.1016/j.matchemphys.2018.01.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influence of the various synthesis methods on the ZnO nanoparticles property made using the bark extract of *Terminalia arjuna*

Raunak Saha, Subramani Karthik, Kolathupalayam Shanmugam Balu, Rangaraj Suriyaprabha,
Palanisamy Siva and Venkatachalam Rajendran*

Centre for Nano Science and Technology, K. S. Rangasamy College of Technology,

Tiruchengode-637215, Tamil Nadu, India

Abstract

In this study, ZnO nanoparticles were green synthesised from Terminalia arjuna bark extract using Zinc acetate as a precursor. The prepared ZnO nanoparticles were synthesised employing three different synthesis methods namely Sonication, Wet-chemical and Hydrothermal methods. The most effective processing method and its influence over the nanoparticles property was determined by subjecting a comparative assessment between the ZnO nanoparticles in virtue of its property with the change in processing methods during its synthesis. The structure/morphology of the green synthesised ZnO nanoparticles were ascertained through X-ray diffraction, particle size analysis, scanning electron microscope, transmission electron microscope, and surface area analysis technique. The crystallinity of ZnO nanoparticles was retained as spherical structure even though the nanoparticles processing parameters varies by different synthesis methods. It was observed from physico-chemical and biological characterisation studies that ZnO synthesised using hydrothermal method exhibits high surface area (217 m² g⁻¹) and small particle size (21 nm) with low toxicity in Danio rerio and good antibacterial activity against Escherichia coli (22.5 mm) and Staphylococcus aureus (25.4 mm). These results could be strongly attributed to the definable structure of ZnO nanoparticles formed

Download English Version:

https://daneshyari.com/en/article/7921934

Download Persian Version:

https://daneshyari.com/article/7921934

<u>Daneshyari.com</u>