Accepted Manuscript

Nano-structured Pd doped $LaFe(Co)O_3$ perovskite; synthesis, characterization and catalytic behavior

MATERIALS
CHEMISTRY AND
PHYSICS
INCLUDING
COMMUNICATIONS
INCLUDING
COMU

Seyedeh Behnaz Varandili, Alireza Babaei, Abolghasem Ataie, Abbas Ali Khodadadi, Hossein Kazerooni

PII: S0254-0584(17)30909-4

DOI: 10.1016/j.matchemphys.2017.11.030

Reference: MAC 20150

To appear in: Materials Chemistry and Physics

Received Date: 13 May 2017

Revised Date: 23 October 2017

Accepted Date: 13 November 2017

Please cite this article as: Seyedeh Behnaz Varandili, Alireza Babaei, Abolghasem Ataie, Abbas Ali Khodadadi, Hossein Kazerooni, Nano-structured Pd doped LaFe(Co)O₃ perovskite; synthesis, characterization and catalytic behavior, *Materials Chemistry and Physics* (2017), doi: 10.1016/j. matchemphys.2017.11.030

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

- A relationship between catalytic activity and synthesis parameters was explained.
- Pd⁰ nanoclusters segregate from Pd-doped perovskite in reductive atmosphere.
- Samples coprecipitated by ammonia possess higher surface area.
- The effect of Pd doping on CO oxidation is more sensible than methane oxidation.

Download English Version:

https://daneshyari.com/en/article/7922352

Download Persian Version:

https://daneshyari.com/article/7922352

<u>Daneshyari.com</u>