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a b s t r a c t

A new way of handling, simultaneously, porosity and bending resistance of a massive
filament is proposed. Our strategy extends the previous methods where porosity was
taken into account in the absence of bending resistance of the structure and overcomes
related numerical issues. The new strategy has been exploited to investigate how porosity
affects the stability of slender elastic objects exposed to a uniform stream. To understand
under which conditions porosity becomes important, we propose a simple resonance
mechanism between a properly defined characteristic porous time-scale and the standard
characteristic hydrodynamic time-scale. The resonance condition results in a critical value
for the porosity above which porosity is important for the resulting filament flapping
regime, otherwise its role can be considered of little importance. Our estimation for the
critical value of the porosity is in fairly good agreement with our DNS results. The com-
putations also allow us to quantitatively establish the stabilizing role of porosity in the
flapping regimes.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Motion of deformable, slender structures immersed in an incompressible viscous fluid is common in natural phenomena,
and can be found in many applications such as paper processing (Lundell et al., 2011), energy harvesting (McKinney and
DeLaurier, 1981; Boragno et al., 2012; Orchini et al., 2013) and passive control (Favier et al., 2009; Lācis et al., 2014; Orchini
et al., 2015). In the present paper, we study numerically how porosity – a key factor in a number of both biological and
technological tissues – plays a role in the dynamics of a flapping hinged filament, commonly referred to as the flag-in-the-
wind problem. Similar to previous works (Peskin, 2002; Zhu and Peskin, 2002; Kim and Peskin, 2007), an immersed
boundary (IB) approach has been used in order to efficiently handle elastic interfaces interacting with a viscous incom-
pressible fluid. The IB method is used for a wide range of applications, from blood flow around cardiac valves (Kovacs et al.,
2001) and animal locomotion (Fauci and Peskin, 1988) to flow in deformable tubes (Beyer, 1992).

The flag-in-the-wind – i.e. an elastic one-dimensional boundary tethered at one end in a two-dimensional laminar flow –

has been studied theoretically, numerically and experimentally as the archetype for the instability of an elastic structure
subject to a fluid flow. Under certain conditions a phenomenon, known as flutter, is caused by a positive feedback between
the body's deflection and the forcing exerted by the fluid flow. Often, a number of frequencies are triggered by the uniform
flow affecting the body, which begins to resonate when its own natural frequency has been excited. This paper aims at
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investigating how porosity affects the stability of slender elastic objects exposed to a uniform stream. The long-term motion
of the filament can result in a fixed-point solution, a limit-cycle flapping or a chaotic motion, depending on the governing
parameters of the system (Shelley and Zhang, 2011).

Starting from Rayleigh's first theoretical approach in Rayleigh (1879) involving the evolution of a two-dimensional vortex
sheet, the stability analyses of the flag have been enriched by inertial and structural mechanical properties (Connell and Yue,
2007; Lighthill, 2007; Coene, 1992; Argentina and Mahadevan, 2005; Skotheim and Mahadevan, 2004). More recently,
increasingly accurate numerical studies (most of them using an immersed boundary approach) have come into support of
analytical results (Peskin, 2002; Uhlmann, 2005; Pinelli et al., 2010; Favier et al., 2014). In particular, Zhu and Peskin (2002)
first pointed out the important role of length and mass on the onset of flapping, and described the bistable behavior of the
flapping. Both Kim and Peskin (2007) and Huang et al. (2007) developed methods to handle massive filaments more effi-
ciently. The first numerical study taking into account porosity was by Kim and Peskin (2006), in which the dynamics of a
porous massless 2D parachute not resisting bending was investigated. An overview of the dynamics of slender interacting
body with fluid flows is found in Shelley and Zhang (2011).

In the present work, we propose a way of modeling porosity and bending resistance of a massive filament which
overcomes some of the major drawbacks of the method proposed in Kim and Peskin (2006). The approach proposed here is
based on the method described by Huang et al. (2007), and provides enhanced numerical stability with respect to the
approach suggested in Kim and Peskin (2006) by avoiding the spring-like discretization of the filament and the penetration
velocity given in Eq. (15) of the same paper. The 1D porous filament can be considered as a model for the flow in one plane
perpendicular to a 3D permeable sheet. The porous filament can also be considered as a model for a three dimensional flow
past an impermeable fiber, where the leakage through the porous filament corresponds to the flux past the filament in the
3D problem (see e.g. Wexler et al., 2013).

The paper is organized as follows. Section 2 describes the numerical model, while Section 3 contains a comparison
between our model for porosity and Darcy's law. In Section 4 the numerical scheme is validated using an analytical stability
criterion based on the slender body theory. Numerical and theoretical results are presented in Sections 5 and 6, respectively.
Finally conclusions are drawn in Section 7.

2. Problem formulation

We consider a one-dimensional incompressible elastic filament of length Ln, with mass per unit length ρ�S and bending
rigidity K�

b, exposed to a viscous incompressible fluid of density ρ�F , viscosity ν� with a uniform velocity U�
1. The governing

equations for the fluid are the Navier–Stokes equation (1) considered together with an appropriate volume forcing fðx; tÞ to
enforce the no-slip condition on the filament,
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where uðx; tÞ is the velocity field, pðx; tÞ is the pressure field and Re is the Reynolds number. Here x¼ ðx; yÞAΩ is the
Cartesian physical coordinates, with Ω denoting the physical domain, x and y are the stream-wise and cross-stream
direction, respectively.

The filament dynamics is considered in Eqs. (2) and (3), where the first is d'Alembert elastic string equation and the
second introduces the tension as a Lagrange multiplier in order to enforce incompressibility (Huang et al., 2007),
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Here, sAΓ is the Lagrangian curvilinear coordinate, with Γ denoting the body surface; Xðs; tÞ ¼ ðX1ðs; tÞ;X2ðs; tÞÞAΓ denotes
the physical position of each material point of curvilinear coordinate s at time t and Tðs; tÞ represents the tension. In par-
ticular, on the right hand side of Eq. (2) the first two terms represent the tensional ðFsÞ and bending terms ðFbÞ. The last term
are the Lagrangian forces exerted by the fluid on the structure, obtained by means of Eqs. (4) and (6), where the first is
Goldstein's feedback law (Goldstein et al., 1993) and the latter is the reduction due to porosity, whose meaning will be
explained in Section 2.4. Notice that the non-slip condition is enforced implicitly by means of
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