
Morse function for nanoscaled cubic metals

Z. Wen, Y.F. Zhu*, Q. Jiang
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130022, China

h i g h l i g h t s

� Establishing the Morse function for metallic nanoparticles and nanostructured materials.
� The interatomic spacing is contracted for NPs but expanded for NS.
� The depth of the potential well becomes shallow with smaller size especially for NPs.
� The asymmetry of the binding energy curve becomes stronger in particular for NPs.
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a b s t r a c t

Relying on our size-dependent cohesive energy and lattice constant functions, we established the Morse
function in a unified form for nanoscaled cubic metals, involving metallic nanoparticles (NPs) and
nanostructured materials (NSs). At the equilibrium position at 0 K, the depth of the potential well be-
comes shallow with smaller D especially for NPs, where D denotes the diameter of NPs or the grain size
of NSs. This gives rise to the contraction or expansion of the interatomic spacing for NPs or NSs,
respectively. The asymmetry of the binding energy curve in NPs is stronger than in NSs. The difference
between NPs and NSs is largely associated with the distinction in the coordination imperfection between
the surface and the grain boundary. The established function was supported by available experimental
and computer simulation results for NPs and NSs.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the considerable progress in materials science, metallic
nanoparticles (NPs) and nanostructured materials (NSs) have now
received much attention [1,2]. Due to the increased surface (inter-
face)/volume ratio or 1/D of NPs or NSs, the physical and chemical
properties of NPs and NSs differ dramatically from their bulk
counterparts, where D denotes the diameter of NPs or grain size of
NSs [3e5]. For example, the thermal vibration amplitude s(T,D) and
the thermal enthalpy H(T,D) of NPs and NSs increase as D decreases,
where T denotes the absolute temperature [2]. However, the
varying amplitude of these parameters is found to be somewhat
weaker in NSs than that in NPs. The fascinating properties of NPs
and NSs are relevant to the coordination imperfection at the surface
or interface, because it leads to high atomic internal energy there
relative to the interior case [6,7]. As the thermophysics of cubic
metals is concerned, these thermal properties are associated to the

anharmonic vibration of atoms in solids, which is essentially
decided by the basic amount of cohesive energy. Considering that
an anharmonic potential can be used to predict the dissociation
energy of diatomic molecules, it is thus of importance in the
establishment of a suitable potential function for illustrating the
distinct properties of NPs and NSs theoretically. However, it has
remained unavailable yet.

As a central pairwise potential function, for bulk cubic metals, a
binding energy curve elucidated by the Morse function u(r,N) is a
better approximation for vibrational structures of molecules than
the quantum harmonic oscillator does, where r andN, respectively,
denote the interatomic spacing and the bulk size, respectively. This
is because theMorse function explicitly includes the effects of bond
breaking, such as the existence of unbound states. It also accounts
for the anharmonicity of real bonds and the non-zero transition
probability for overtone and combination bands. Various crystal
properties regarding the anharmonicity of atom vibrations, such as
the cohesive energy, the lattice constant, the specific heat, the
compressibility, the equation of state, and the elastic constants, can
be described by the Morse function [8e11].
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The Morse function for a bulk is expressed as [12],

uðr;NÞ ¼ �2EcðNÞ=ðZNAÞ
n
e�2b½r�hð0;NÞ� � 2e�b½r�hð0;NÞ�

o
;

(1)

where Ec(N) is the bulk molar cohesive energy, Z the coordination
number and the Avogadro constant NA ¼ 6.02 � 1023 mol�1. b is a
constant denoting the inverse line width of the potential [13],

b ¼ RqðNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�MZ=½4NAEcðNÞ�

p
=Z; (2)

with M denoting the reduced mass, q(N) the bulk Debye tempera-
ture, R¼ 8.314 Jmol�1 K�1 the gas constant and Z¼ 1.054�10�23 J s
the Planck constant divided by2p. In Eq. (1), du(r,N)/dr¼ 0 occurs at
r ¼ h(0,N) and u ¼ 2Ec(N)/(ZNA), where Ec(N) is available from
literature. However, h(0,N) cannot be taken from literature directly.
Instead, it is usually given by h(0,N) ¼ h(T,N)�Dh(T,N) with
Dh(T,N) being the effective displacement of the equilibriumposition
of atoms relative to 0 K level, where the action force of attraction
and that of repulsion is equal. Considering that the coefficient of
linear thermal expansion a(T,N) is one of the consequences of
the anharmonicity of atomvibrations in solids, it plays an important
role in determining Dh(T,N) according to the equation
DhðT;NÞ ¼ hð0;NÞ R T

0 aðT ;NÞdT [13]. When the frequency
distribution of the Morse oscillator is assessed from the Debye
approximation, a(T,N) can be deduced as aðT;NÞ ¼
f � 3ZRT=½4bhðT ;NÞEcðNÞ�g½T=q ðNÞ�3 R qðNÞ=T

0 x4ex=ðex � 1Þ2dx. On
the basis of assumption that h(0,N)/h(T,N) z 1, one has,

DhðT ;NÞzf � 3ZRT=½4bEcðNÞ�g

� ½T=qðNÞ�3
ZqðNÞ=T

0

x3=ðex � 1Þdx: (3)

In the binding energy curves, the potential ueq(r,N) at the
equilibrium position of atomswith r¼ req¼ (r1þ r2)/2¼ h(T,N) at a
given T with r1 and r2 being the roots is derived as,

ueqðr;NÞ ¼ 2EcðNÞ=ðZNAÞe�2b½req�hð0;NÞ�: (4)

Along the equilibrium position r ¼ req, the slope
kðT;NÞ ¼ vueqðr;NÞ=vr denotes the asymmetry in the potential
well, reflecting the interaction of the nearest two atoms, i.e., lower
k(T,N) value means weaker interaction [14]. In terms of Eq. (4), one
has,

kðT ;NÞ ¼ �4bEcðNÞ=ðZNAÞ=e�2bDhðT ;NÞ: (5)

By solving Eq. (1), s(T,N)¼ (r1� r2)/2 in the binding energy
curves can be given with the help of Eq. (4). One can thus see that,

sðT ;NÞ ¼ ln
nh

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2bDhðT;NÞ

p i.h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2bDhðT;NÞ

p i

�
o.

ð2bÞ:
(6)

Stimulated by the success in the bulk case, thanks to its
advantage in elucidating the anharmonicity of vibrational struc-
tures of molecules, one may expect that the Morse potential func-
tion of u(r,D) in the nanometer size range can be established for NPs
and NSs. However, it was previously thought that the Morse po-
tential could not reproduce the thermal properties of nanoscaled
metals [15]. This is because, since the Morse potential considers
only two-body interaction, it provides a poor description of the
metallic bonding dependent on the local environment [15]. In

detail, the bond strength decreases as the local environment be-
comes too crowded due to Pauli’s “exclusion principle”, and in-
creases at near surfaces or in small systems due to the localization
of the electron density. In fact, such an issue can be addressed if the
key parameters of Ec(N) and h(0,N) in Eq. (1) can be extended into
the nanometer regime. Fortunately, as will be shown later, this
extension has been realized in our previous works [16e18].

In the present work, the nanoscaled Morse function u(r,D) will
be established for NPs and NSs without any adjustable parameters,
under the help of the proposed Ec(D) and h(0,D) functions. Here,
h(0,D)¼ h(T,D)�Dh(T,D), where the definition of h(0,D) and Dh(T,D)
for NPs and NSs can be referenced to the bulk case. The established
Morse function will be applied to predict the D- and T-dependent
thermal properties of cubic metals, beneficial for our understand-
ing to the difference between NPs and NSs.

2. Theoretical consideration

If the crystalline structure remains unchanged as D decreases
from N, u(r,D) could be a continuous function of D down to a
certain value of D0 ¼ 6h(T,N), at which almost all atoms or mole-
cules are located on the surface and the crystalline structure is no
more stable [19]. The Morse function for NPs and NSs can be
conveniently established by extending Eq. (1) as,

uðr;DÞ ¼ �2EcðDÞ=ðZNAÞ
n
e�2b½r�hð0;DÞ� � 2e�b½r�hð0;DÞ�

o
; (7)

where h(0,D) ¼ h(T,D)�Dh(T,D). With a similar consideration, the
related functions Dh(T,D), ueq(r,D) and k(T,D) can be given as,

DhðT;DÞ ¼ �3ZRT=½4bEcðDÞ�½T=qðDÞ�3
ZqðDÞ=T

0

x3=ðex � 1Þdx;

(8)

ueqðr;DÞ ¼ 2EcðDÞ=ðZNAÞe�2bDhðT ;DÞ; (9)

kðT ;DÞ ¼ �4bEcðDÞ=ðZNAÞe�2bDhðT ;DÞ: (10)

The relationship between q(D) and Ec(D) can be given by [20,21],

½qðDÞ=qðNÞ�2 ¼ EcðDÞ=EcðNÞ: (11)

To work out the above size-dependent functions, Ec(D) and
h(T,D) functions should be explored. Note that the aforementioned
constant b, which is determined by Eq. (2), is D-independent due to
the same size dependence of q(D) and [Ec(D)]1/2 in light of Eq. (11).

For NPs, ENPc ðDÞ has been modeled as [16],

ENPc ðDÞ
EcðNÞ ¼

�
1� 1

12D=D0 � 1

�
exp

�
� 2Sb

3R
1

12D=D0 � 1

�
;

(12.1)

where Sb¼Hb/Tb is the bulk solidevapor transition entropy, Hb the
heat of vaporization and Tb the boiling point for a bulk. Since the
coordination imperfection at grain boundaries of NSs is weaker
than that at the surface of NPs, in accordance, the D-dependence of
Ec(D) is weak for NSs. Thus, one has [18],

ENSc ðDÞ=EcðNÞ ¼ 1� D0=ð4DÞ: (12.2)

From amechanical point of view, the hydrostatic pressure on the
surface induced by intrinsic surface stress results in lattice
contraction or lattice strain. Based on the LaplaceeYoung equation
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