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A B S T R A C T

The results of studying the quantum conductance staircase of holes in one-dimensional channels obtained by
the split-gate method inside silicon nanosandwiches that are the ultra-narrow quantum well confined by the
delta barriers heavily doped with boron on the n-type Si (100) surface are reported. Since the silicon quantum
wells studied are ultra-narrow (~2 nm) and confined by the delta barriers that consist of the negative-U dipole
boron centers, the quantized conductance of one-dimensional channels is observed at relatively high
temperatures (T > 77 K). Further, the current-voltage characteristic of the quantum conductance staircase is
studied in relation to the kinetic energy of holes and their sheet density in the quantum wells. The results show
that the quantum conductance staircase of holes in p-Si quantum wires is caused by independent contributions
of the one-dimensional (1D) subbands of the heavy and light holes. In addition, the field-related inhibition of
the quantum conductance staircase is demonstrated in the situation when the energy of the field-induced
heating of the carriers become comparable to the energy gap between the 1D subbands. The use of the split-gate
method made it possible to detect the effect of a drastic increase in the height of the quantum conductance steps
when the kinetic energy of holes is increased; this effect is most profound for quantum wires of finite length,
which are not described under conditions of a quantum point contact. In the concluding section of this paper we
present the findings for the quantum conductance staircase of holes that is caused by the edge channels in the
silicon nanosandwiches prepared within frameworks of the Hall geometry. This longitudinal quantum
conductance staircase, Gxx, is revealed by the voltage applied to the Hall contacts, with the plateaus and steps
that bring into correlation respectively with the odd and even fractional values.

1. Introduction

1.1. Conductance and conductivity

The scaling assumption is well-known to consider the relationship
between the resistivity and the resistance of a hypercube:

R ρL= d(2− ) (1)

where L is the size of a hypercube and d denotes the dimension of a
system [1,2].

Therefore the conductance, G, of a rectangular two-dimensional,
d=2, conductor is directly proportional to its width, W, and inversely
proportional to its length, L:

G σW L= / (2)

where the conductivity, σ, is a material parameter independent of the
sample dimensions [3]. However contrary to the expectations that the
conductance has to increase indefinitely when the length of a two-

dimensional sample is reduced, the limiting value, Gc, has been found
experimentally if its value becomes shorter than the mean free path
(L<<Lm) (Fig. 1a). Under these conditions corresponding to the
ballistic transport regime, the resistance appears to result from the
interface between the conductor and the large contact pads which are
very dissimilar materials.

In order to provide the drop of the applied voltage entirely across the
conductor, the contacts have to be more conducting than the conductor
and exhibit the properties of reflectionless [3]. It should be noted that
the reflection appears to be negligible with transmitting from the narrow
conductor to the wide contact. Therefore the quasi-Fermi level F+ for the
+k states is equal to μL even when a bias is applied (see Fig. 1b and c).
No carriers originating in right contact ever makes its way to +k state.
Similar approach can be applied for the quasi-Fermi level F- with –k that
is always equal to μR (see Fig. 1b and c). Thus, at low temperatures the
current is equal to that carried by all the +k states lying between μL and
μR [3].

Hence the current appears to be calculated within frameworks of
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the model of the states in the narrow conductor that belong to different
transverse modes or subbands [3]. Each mode has a dispersion relation
E(N,k) as sketched in Fig. 1a and b with a cut-off energy

ε E N k= ( , = 0)N (3)

below which it cannot propagate. The number of transverse modes at
an energy E is obtained by counting the number of modes having cut-
off energies smaller than E:

∑M E E ε( ) = ϑ( − )
N

N
(4)

The current carried by each transverse mode can be evaluated
separately and add them up. In turn, a single transverse mode whose
+k states are occupied according to some function f+(E) is attributable
to a uniform electron gas with n electrons per unit length moving with a
velocity ν carriers a current equal to enν. Since the electron density
associated with a single k-state in a conductor of length L is (1/L) we
can write the current I+ carried by the +k states as

∑ ∑I e
L

vf E e
L

E
k

f E= ( )= 1
ℏ

∂
∂

( )
k k

+ + +

(5)

Assuming periodic boundary conditions and converting the sum
over k into an integral according to the usual prescription

∫∑ for spin L
π

dk→ 2( ) ×
2k (6)

The current is described by the following relationship

∫I e
h

f E dE= 2 ( )
ε

+
∞

+
(7)

where ɛ is the cut-off energy of the waveguide mode. This result can be
extended to multi-moded waveguides:

∫I e
h

f E M E dE= 2 ( ) ( )
ε

+
∞

+
(8)

where the function M(E) corresponds to the number of modes that are
above cut-off at energy E. It should be noted that this result is generally
independent of the actual dispersion relation E(k) of the waveguide:
the current carried per mode per unit energy by an occupied state is
equal to 2|e|/h (which is about 80 nA/meV) [3].

1.2. Contact resistance

When the number of modes M is constant over the energy range
μL > Ε > μR, the conductance of the narrow conductor depends
linearly on the conductance of the single one-dimensional channel and
the number of modes:

I e
h

M
μ μ

e
G e

h
M= 2 ( − )

⇒ = 2L R
C

2 2

(9)

Thus, the contact resistance which represents the resistance of a ballistic
waveguide goes down inversely with the number of filled modes [4]:

G
μ μ e

I
h

e M
kΩ

M
≡

( − )/
=

2
≈ 12.9

C
L R−1

2 (10)

This relationship demonstrates that the contact resistance of a
single-moded conductor, 12.9 kOhm, is certainly not negligible and can
be measured if a single-moded ballistic conductor were sandwiched
between two reflectionless conductive contacts. Besides, the contact
resistance is very small if the wide conductors having thousands of
modes are used.

To calculate the number of modes M(E), the cut-off energies for the
different modes εN are needed to be known. Since for wide conductors in
zero magnetic field the precise nature of the confining potential is not
important, the number of modes can be estimated simply by assuming
periodic boundary conditions. The allowed values of ky are then spaced
by 2π/W (see Fig. 1a and b), with each value of ky corresponding to a
distinct transverse mode. At an energy Ef , a mode can propagate only if
–kf< ky< kf. Hence the number of propagating modes can be written as

⎡
⎣⎢

⎤
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k W
π
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λ

= =
/2

f

f (11)

where Int(x) represents the integer that is just smaller than x. Thus, the
verification of the ballistic transport in the narrow conductor which is
revealed by varying the number of filled channels results from the
observation of the quantum conductance staircase. Firstly, this phenom-
enon has been found bymeasuring the quantumHall resistance staircase as
a function of the value of the strong magnetic field applied perpendicularly
to two-dimensional semiconductor structures [1–3,5,6]. Secondly, progress
in semiconductor nanotechnology made it possible to fabricate clean one-
dimensional (1D) constrictions with low density of high-mobility charge
carriers, which exhibit ballistic behavior if the mean free path is longer than
the channel length [7–14]. Therefore, the conductance of such quantum
wires prepared by the split-gate [7–13] and cleaved edge overgrowth [14]
methods depends only on the transmission coefficient, T [4,15]:

G g e
h

M T= ⋅s

2

(12)

whereM denotes the number of the highest occupied 1D subband, which is
changed by varying the split-gate voltage, Usg applied in the plane of two-
dimensional semiconductor structure (Fig. 2b and c). Furthermore, the
dependence G(Usg) represents the quantum conductance staircase, because
the conductance of a quantum wire is changed by the value of gse

2/h each
time when the Fermi level coincides with one of the 1D subbands [8,9].
Spin factor, gs, describes the spin degeneration of the wire mode. The value
of gs is equal to two for non-interacting fermions if the external magnetic
field is absent and becomes unity as a result of the Zeeman splitting of a
quantum staircase in strong magnetic fields. The first step of the quantum
conductance staircase has been found however to split into two parts even
in the absence of external magnetic field [10–13]. The height of the substep
that is dependent on temperature is usually observed to be about 0.7 of the
first step value in a zero magnetic field. Two experimental observations
indicate the importance of the spin component for the behavior of this
0.7 · (2e2/h) feature. First, the electron g - factor was found to increase from
0.4 to 1.3 as the number of occupied 1D subband decreases [10]. Second,
the height of the 0.7 · (2e2/h) feature attains to a value of 0.5 · (2e2/h) with
increasing external magnetic field [10–13]. These results have defined the
spontaneous spin polarisation of a 1D gas in a zero magnetic field as one of
possible mechanisms for the 0.7 · (2e2/h) feature [13,16–20] in spite of the
theoretical prediction of a ferromagnetic state instability in ideal 1D
systems in the absence of a magnetic field [21].

Studies of the quantum conductance staircase revealed by ballistic
channels have shown that the 0.7 · ( 2e2/h) feature is observed not only
in various types of the electron and hole GaAs based quantum wires
[8–14,16–18,20,22], but also in the hole Si based quantum wires

Fig. 1. (a) The narrow conductor that is able to demonstrate the ballistic transport
effects when its length becomes shorter than the mean free path (L < < Lm). The number
of propagating modes (occupied one-dimensional subbands) depends on the relation
between the width of the conductor and the Fermi wavelength, N=Int[W/(λF/2)], if the
vertical transport is forbidden.
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