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A B S T R A C T

The accuracy of phase shift extraction has a significant influence on measurement results in surface micro-
topography interferometry. Phase shifting errors are mainly caused by nonlinearity of the employed phase
shifter, environmental turbulence, camera imperfection and so on. In this paper, a general algorithm based
on Lissajous figures and ellipse fitting is proposed for extracting the phase distribution from a set of phase-
shifting interferograms with random noise. Two sets of pixels with 𝜋∕2 phase difference in all the investigated
interferograms are selected and used for ellipse fitting. Both numerical simulations and optical experiments have
proven the validity, rapidity, and accuracy of the proposed method. Experiments show that the proposed method
is a general phase extraction method, which can work for straight fringe patterns, circle fringes patterns and other
anomalous features.

1. Introduction

High precision surface topography measurement has many applica-
tions in areas such as integrated circuits and MEMS [1–5]. Phase-shifting
interferometry (PSI) is one of the most widely used techniques in surface
topography measurement as it is non-contact, non-destructive and has
high accuracy [6–10]. To conduct a complete phase-shift measurement,
a piezoelectric ceramic transformer (PZT) is generally used as the phase
shifter. However, due to the hysteresis nonlinearity of the PZT and
the instability of the environment (including ambient vibration and
air shock), random sampling errors are unavoidable in phase shift
measurement. The accurate extraction of phase shifts is a challenging
task and has significant influence on measurement results.

To reduce the errors in the phase-shift extraction, many researchers
have tried changing the configuration of interferometers or improving
phase-shifting algorithms. For example, simultaneously phase shifting
interferometry (SPSI) can effectively avoid environmental vibrations by
collecting interferograms instantaneously [11,12], but the limitation
of this method is the complicated hardware configuration. In fact,
there has been more research focusing on modification of phase-shifting
extraction algorithms. All the existing algorithms can be divided into
two classes: iterative algorithms [13–15] and non-iterative algorithms
[16–18].
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In 1982, Morgan developed a least-squares iterative algorithm that
estimates phases and their perturbation caused by linear time-dependent
drifts [19]. In 1991, Okada et al. proposed a least-square-based iterative
algorithm to solve a set of approximate linear equations iteratively,
which allows the phase shift amounts and phase distributions to be
determined simultaneously [20]. In 2007, Wang et al. proposed an
advanced iterative algorithm (AIA) which can extract both initial phase
distribution and phase shift amounts using three randomly shifted
interferograms [21], overcoming the limitation found in conventional
iterative algorithms that the number of frames must be at least four.
In simulation, the phase extraction errors of the AIA algorithm with
three frames are less than 0.0152 rad [15,21]. In 2010, Q. Kemao
et al. proposed a windowed Fourier ridges and least squares fitting
(WFRLSF) [22], and presented the phase shift errors of the algorithms:
the AIA, the WFRLSF, the windowed Fourier transform (WFF) + AIA
+ WFF, and the WFF + WFRLSF + WFF. In simulation the phase shift
errors are less than 0.06 rad, and as noise level is increased the phase
shift error ranged from 0.026 to 0.29 rad. Recently, R. Zhu et al.
extracted measurement phases from two phase-shifting fringe patterns
using the spatial-temporal fringes method [23]. The surface error using
this method is 1.8 × 10−3𝜆.

Compared with the iterative algorithms above, the approaches based
on non-iterative solutions are intended to find the optimal results in less
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time. Lissajous ellipse fitting, an example of a non-iterative approach,
has proved to be an outstanding algorithm to extract phase shifts with
high accuracy and efficiency [24]. In 1994, Farrell and Player used a
pair of different pixels in fringe field (inter-pixel) to create Lissajous
figures, from which they then calculated phase shift amounts, intensity
bias and intensity modulation at each pixel using ellipse fitting, under
the condition of both unequal and unknown phase steps [25]. The
experimental result of wavefront reconstruction shows that the accuracy
of the proposed algorithm is 0.032 rad. In addition, they mentioned
that if the phase difference between the pixel pairs is close to ±𝑛𝜋,
Bookstein’s algorithm would fail. In 2015, Fengwei Liu et al. proposed
to correct the dynamic random phase shift errors by transforming the
Lissajous ellipse to a unit circle (ETC) [26]. They deduced that the phase
extraction error can be compensated with the unit circle and that the
accuracy of correcting the phase extraction error is mainly dependent
on the parameters of the ellipse. Experimental results show that the
ETC method has similar precision comparable to AIA. Both Refs. [25]
and [26] mentioned that when the phase difference between the pair of
pixels equals 𝜋∕2 the extracted phase will be most accurate. However,
a way of choosing the pixel pairs is lacking. Moreover, the accuracy
and reliability of the phase extraction will be appreciably affected by
random phase shifting noise if only a single pair of pixels is used for
Lissajous ellipse generation.

By using a series of pixel pairs with 𝜋∕2 phase difference, we
introduce a high-precision phase extraction method based on a least-
squares algorithm and general ellipse fitting. The proposed method
chooses the same region from all interferograms, and the average
intensity of each selected region is calculated. Then two index numbers
of interferograms sequence are obtained by seeking two points with
𝜋∕2 phase difference within the average intensity array. Following this,
two groups of pixels with 𝜋∕2 phase difference in all the investigated
interferograms are selected and used for ellipse fitting. The proposed
method is not restricted in 3-interferograms, and it can effectively
suppress random phase-shifting errors.

2. Theoretical analysis

2.1. Seeking two interferograms with 𝜋∕2 phase difference

The phase-shift fringe pattern generated by phase-shifting can be
expressed as

𝐼𝑖(𝑥, 𝑦) = 𝐴𝑖(𝑥, 𝑦) + 𝐵𝑖(𝑥, 𝑦) cos[𝜑(𝑥, 𝑦) + 𝜃𝑖] +𝑁𝑖(𝑥, 𝑦) (1)

where 𝑖 denotes the sequence number of phase-shifting interferogram,
(𝑥, 𝑦) represents the coordinate of an arbitrary pixel, 𝐼𝑖(𝑥, 𝑦) is the
intensity at pixel location (𝑥, 𝑦), 𝐴𝑖 and 𝐵𝑖 represent the background
intensity and the modulation amplitude respectively, 𝜑(𝑥, 𝑦) is the initial
phase, 𝑁𝑖(𝑥, 𝑦) denotes the random noise, and 𝜃𝑖 describes the phase
shift of the 𝑖th interferogram. 𝜃𝑖 is the main phase shift parameter that
we need to obtain in each interference sequence.

With ellipse fitting, the accuracy of extracted phase shift 𝜃𝑖 can be
improved by using two sets of signals that are reliable with phase differ-
ence 𝜋∕2 [25]. The set of points can be selected in two interferograms
that have a feature with 𝜋∕2 phase difference. Now we explain how to
find these two interference patterns.

Firstly, a center area (here, a rectangle with a length of 𝑎2 − 𝑎1
and a width of 𝑏2 − 𝑏1 as an example) of each interferogram is chosen
to calculate the average intensity of all pixels in accordance with the
expression.

𝐺𝑖 =
1

(𝑎2 − 𝑎1) ∗ (𝑏2 − 𝑏1)

𝑎2
∑
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∑
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𝐼𝑖(𝑥𝑘, 𝑦𝑙) (2)

where 𝐺i represents the average gray value of all the pixels in the
selected region. The average value 𝐺i follows a sine curve, as show in
Fig. 1, in which the maximum and minimum values of 𝐺i, i.e., 𝐺max and
𝐺min, are marked with red points.

Fig. 1. The tendency of intensity curves with 35 fringes. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. Select the pixels with the same gray-scale change tendency. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

We seek two values in the array 𝐺i with 𝜋∕2 phase difference.
According to the law that the phase difference between the maximum
value and the middle value (amplitude = 0) is 𝑘𝜋 + 𝜋∕2, we can obtain
the sequence numbers 𝑚 and 𝑛 from the following equation:
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(3)

The phase difference between the 𝑚th and the 𝑛th interferograms is close
to 𝑘𝜋 + 𝜋∕2 + 𝜀, where 𝜀 is a deviation close to zero. The corresponding
intensities 𝐼m and 𝐼n can be expressed as:
{

𝐼𝑚(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) cos[𝜑(𝑥, 𝑦) + 𝜃𝑚]
𝐼𝑛(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) cos[𝜑(𝑥, 𝑦) + 𝜃𝑚 + 𝑘𝜋 + 𝜋∕2 + 𝜀]

(4)

where 𝜃𝑚 is the 𝑚th phase shift value.

2.2. Seeking the pixels with same phase change tendency in mth and nth
interferograms

Due to the unavoidable random noise, the Lissajous fitting accuracy
will be unreliable if just a single pixel is used in each interferogram.
Therefore, we propose to replace a single pixel by the average value
of a group of pixels selected from the interferograms 𝐼𝑚 and 𝐼𝑛 in a
certain way. Specifically, we take all pixels with the same grayscale
change tendency within a certain range, such as (−𝜋 < phase < 0). For
example, in Fig. 2, 𝑃1, 𝑃2 and 𝑃3 represent the intensity distributions of
three points ((𝑥p1, 𝑦p1), (𝑥p2, 𝑦p2), (𝑥p3, 𝑦p3)) in different interferograms.
The red pixels ((𝑥p2, 𝑦p2), (𝑥p3, 𝑦p3)) in the 𝑚th interferogram will be
selected for Lissajous fitting because at each of these points the intensity
is increasing, however the pixel (𝑥p1, 𝑦p1) is not selected as its intensity
is decreasing. Similarly for the 𝑛th interferogram, suitable pixels have
been marked in green in Fig. 2.
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