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A B S T R A C T

We propose a non-null subaperture stitching method to measure the convex aspheric surfaces. In the method, the
non-null configuration avoids the introduction of auxiliary optical elements which must be specially designed
and customized, and their compensating effects cannot be independently measured. In order to obtain the full
aperture result, a non-null stitching algorithm based on ray tracing method and least square method is developed
to stitch all phase data together. Both simulation and experimental results justify the proposed method.

1. Introduction

Aspheric optical surface has broad applications for its capability
in correcting aberrations, improving image quality and reducing the
size and weight of the system [1]. Precise and efficient measure-
ment of aspheric optical surface is necessary. Among different sur-
face characterization techniques, interferometry is playing a more and
more important role. In interferometry, null testing using null lens or
computer-generated hologram (CGH) is an efficient test configuration
for small-aperture optical surfaces [2–7]. However, for testing large-
aperture optics, especially convex aspheric surfaces, the null testing to
the aspheric surface is hard because it is difficult and time consuming to
manufacture required large aperture auxiliary elements such as null lens
or computer-generated hologram. Instead, the sub-aperture stitching
(SAS) testing and the non-null testing can be combined to accomplish
the interferometry of the convex aspheric surfaces.

SAS testing has been developed to overcome the aperture size lim-
itations of interferometers. It can obtain the full aperture map without
testing the whole mirror at one time, thus it is widely used in measuring
large flat mirrors, large convex surfaces and aspheric surfaces exceeding
the vertical range of the interferometer. The SAS testing method was
first proposed by Kim in 1982, and significantly expanded the dynamic
range of an interferometer [8]. According to the testing region shape
of the subaperture, there are two major stitching methods: one is the
annular stitching method which is widely used in the stitching testing
for concave rotational symmetric aspheric surfaces [9–12], and the other
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one is the circular stitching method which has better generality and
expandability [13,14].

In this paper, we propose a simple, efficient non-null stitching tech-
nique with circular subapertures to test convex aspheric surfaces. With
the proposed method, we characterized a 𝜙 260 mm convex hyperboloid
surface. The stitching accuracy can be evaluated by the simulation and
the experimental results. The paper is organized as follows. In Section 2,
the basic theory of the stitching technique involving the retrace error
calculation and the stitching algorithm is introduced. In Section 3, the
effectiveness of our method is shown in simulation. In Section 4, we
demonstrate the technique by testing a 𝜙 260 mm convex hyperboloid
surface. Finally, the conclusion is given in Section 5.

2. Theory

2.1. The principle of the retrace error correction

The retrace error in the non-null testing can be calculated with ray
tracing method. Unlike the null testing, the testing rays in the non-
null testing follow different paths from the reference rays. The resulting
extra aberration between the measured and the real surface maps is the
retrace error. The retrace error should be corrected before stitching as
it is not manufactory surface error but an artificial extra aberration due
to the non-null testing.
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Fig. 1. Retrace error for rotational symmetric subapertures.

The wavefront tested by the interferometer includes both the surface
error of the testing aspheric surface and artifacts such as the retrace
error, the alignment error, and the retrace coordinate error [15,16]. So
the wavefront obtained from the interferometer can be expressed as:

𝑊int𝑒𝑟𝑓𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 = 𝑊𝑟𝑒𝑡𝑟𝑎𝑐𝑒 ⊕𝑊𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ⊕𝑊𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 ⊕𝑊𝑡𝑒𝑠𝑡 (1)

where 𝑊int𝑒𝑟𝑓𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 is the measured wavefront from the interferometer,
𝑊𝑟𝑒𝑡𝑟𝑎𝑐𝑒 is the retrace error, 𝑊𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 is the alignment error between
interferometer and the testing aspheric surface and 𝑊𝑡𝑒𝑠𝑡 is the surface
error of the testing aspheric surface. Note that ‘‘⊕’’ in Eq. (1) denotes
the variables not simply added up. Thus, the total interferometer error
𝑊int𝑒𝑟𝑓𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 depends on all of the retrace error, the alignment error, the
retrace coordinate error and the surface error of the aspheric surface.

Assuming an aspheric mirror to be characterized has a subaperture
aperture of 𝐷𝑠𝑢𝑏 and a vertex radius of 𝑅, the 𝐹 number of the standard
lens should be:

𝐹 ≥ 𝑅
𝐷𝑠𝑢𝑏

(2)

According to the designed optical testing path, the retrace error can
be calculated in the optical simulation tools such as Zemax or Code V
with ray tracing method.

For rotational symmetric subapertures, the retrace error behaves like
a combination of power and spherical aberrations as shown in Fig. 1. For
the off-axis subapertures, the behavior of the retrace error is shown in
Fig. 2.

After calculating the retrace error of each subaperture with the ray
tracing method, the retrace error and the retrace coordinate error can be
removed from the subaperture testing map at the same time [15,16]. The
alignment error of each subaperture will be separated with the stitching
algorithm introduced in Section 2.2.

2.2. Stitching algorithm

In order to obtain a full aperture map, a stitching algorithm is
developed to stitch each subaperture map together to a whole map.

Currently there are several types of stitching algorithms such as
maximum likelihood estimation method, the least square method, and
the iteration method. The maximum likelihood estimation method is
mainly used in flat mirror stitching, and can calculate the test map and
the reference map simultaneously [17]. In the least square method, the

Fig. 2. Retrace error for off-axis subapertures.

full aperture map is reconstructed by compensating the alignment error
of each subaperture [18,19]. The iteration method is based on the three-
dimensional coordinate transformation [20,21].

Different from the above methods, we propose an algorithm combin-
ing the iteration calculation and the least square method.

Our proposed stitching algorithm shown in Fig. 3 is based on the least
square method [18,19]. First according to the subaperture arrangement,
each subaperture is tested with interferometer and non-null errors are
calculated according to the parameters of the vertex radius and the aper-
ture of each subaperture. With the method introduced in Section 2.1,
non-null errors can be removed from each subaperture testing result
and all the coordinates of each subaperture can be unified in a global
coordinate at this time. Then stitching coefficients of each subaperture
except the standard one can be calculated with the stitching algorithm
discussed in Section 2.2. To improve the stitching accuracy, the residual
map of every two adjacent maps is calculated after stitching. If the
RMS of the residual map satisfies the criteria, stitching is accomplished.
If not, two-dimensional cross-correlation between every two adjacent
subapertures is calculated to get a more accurate positioning of each
subaperture and the stitching coefficients of each subaperture will be
recalculated until the residual meets the requirement.

Assuming there are 𝑁 subapertures in the measurement. We take
the 𝑁th subaperture as a reference, then the 𝑖th subaperture can be
expressed as:

𝛷
′
𝑖 (𝑥, 𝑦) = 𝛷𝑖(𝑥, 𝑦) +

𝐿
∑

𝑘=1
𝑎𝑖𝑘𝑓𝑘(𝑥, 𝑦) (3)

where 𝛷𝑖(𝑥, 𝑦) is the 𝑖th subaperture testing map, 𝑓𝑘(𝑥, 𝑦) can be any
predefined functions, 𝑎𝑖𝑘 is the stitching coefficient and 𝐿 is the term
number to be fitted. In the non-null stitching, the term number to be
fitted between subapertures is nine and the function 𝑓𝑘(𝑥, 𝑦) can be
written as:
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𝑓1(𝑥, 𝑦) = 𝑥
𝑓2(𝑥, 𝑦) = 𝑦
𝑓3(𝑥, 𝑦) = 𝑥2 + 𝑦2

𝑓4(𝑥, 𝑦) = 𝑥𝑦
𝑓5(𝑥, 𝑦) = 𝑥2 − 𝑦2

𝑓6(𝑥, 𝑦) = 𝑥(𝑥2 + 𝑦2)
𝑓7(𝑥, 𝑦) = 𝑦(𝑥2 + 𝑦2)
𝑓8(𝑥, 𝑦) = (𝑥2 + 𝑦2)2

𝑓9(𝑥, 𝑦) = 1

(4)
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