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A B S T R A C T

This paper proposes a Hash based authentication scheme that employs equal modulus decomposition (EMD)
and fractional joint transform correlator. An 8-bit grey scale image is separated into its constituent bit plane
matrices. Each bit plane matrix is subjected to EMD encryption procedure employing numerically generated
random phase mask (RPM) and amplitude mask (AM). The EMD encryption results into two complex functions,
which are used for the generation of phase mask and amplitude mask for the next bit plane matrix. A two round
EMD procedure is carried out to obtain an 8-bit intensity matrix which is Fourier transformed and its central
frequency components are extracted to obtain a 256-bit Hash value. Numerical simulations have been carried
out to validate the effectiveness and performance of the proposed scheme.

1. Introduction

Any activity on the internet is based on an exchange of data, which
is binary in nature. The cryptographic algorithms heavily guard the data
to ensure that it is received in the original form without any error. Apart
from digital techniques, optical technology has been found useful in the
area of information security [1]. Optical techniques usually enjoy large
degrees of freedom and parallel processing architecture. Symmetrical
optical image encryption schemes [2,3] have gained a lot of popularity
and have been thoroughly explored by researchers. However, in the
course of time, some vulnerability has been reported in symmetric
cryptosystems [4–6]. To address the issue of linearity, optical asym-
metric encryption methods were reported [7,8]. Peng et al. proposed
an asymmetric image encryption scheme in which the decryption keys
were derived during the encryption process employing amplitude- and
phase truncation of Fourier spectrum [7]. Rajput and Nishchal reported
a scheme in which asymmetric keys were used in the cryptosystem based
on Fresnel domain encoding [8]. Despite of the good security features in
the asymmetric cryptosystems based on Fourier transforms, it has been
proved that they are vulnerable to special attack [9].

However, a question which remained to be answered was about
the integrity of data and source authentication. A general solution
of this problem is to obtain the digital signature of the data using
Hash functions. A digital signature is a compressed form of the input
data which is attached to the encrypted data while communicating.
The receiver then detaches the digital signature, decrypts the data
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and rehashes it to obtain the digital signature. Data integrity and
authenticity is restored if the digital signatures match perfectly [10–17].

A method to implement Hash function based on spatiotemporal
chaos has been reported [10]. The message to be hashed was divided
into fixed length data blocks. Each message block was then compressed
using the proposed Hash function whose keys and initial conditions were
derived from the data block. Further attempts to use chaos theory for
implementing Hash functions have been reported [11–15]. However,
they consumed considerable computational time and offered difficulty
in practical implementation. A cascaded phase-truncated Fourier trans-
form (CPTFT) based optical Hash function of 128-bit length Hash value
has been reported in which a fixed password was used to generate
a pseudo random series which was transformed into a secret key
plane [16]. A block based cascading structure to obtain an optical Hash
function has been implemented by dividing the input image equally into
a number of blocks has been reported [17]. Utilizing the principle of
two beam interference and phase truncation operation a 128-bit Hash
value was obtained by initializing a pseudo random image. However, the
schemes reported in Refs. [16,17] were prone to sensitivity issues and
less secure because of the small bit length of the resultant Hash function.
Elaborative security and performance analysis were not carried out. The
system did not consider the issues related to noise which is an inherent
problem in free space optical setup.

Cryptographic schemes applying the concept of coherent superposi-
tion and equal modulus decomposition (EMD) recently gained a lot of at-
tention owing to its resistance to special attack [18–21]. Inspired by the
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EMD methodology, an authentication verification scheme combining an
optical Hash function and fractional joint transform correlator (FJTC)
is presented in this paper [22–26]. An 8-bit grey scale image taken as
input is separated into its constituent bit plane matrices. Each bit plane
matrix is subjected to EMD encryption procedure employing numeri-
cally generated random phase mask (RPM) and amplitude mask (AM)
with constant seed at the initial state. The output of the EMD operation
results into two complex functions which are used for generation of RPM
and AM respectively for the next bit plane matrix. Finally, the complex
functions obtained after EMD operation on the 8-bit plane matrix are
added and inverse Fourier transformed. Additive white Gaussian noise is
added to the obtained spectra and recorded as an 8-bit intensity matrix.
The recorded matrix is flipped upside down and the EMD encryption
process is repeated to obtain another 8-bit intensity matrix which is
Fourier transformed and the central frequency components are captured
and recorded in an 8-bit format. This gives the 256-bit Hash value of the
input image.

2. Principle.

2.1. The EMD methodology

An input image is bonded with an RPM and is Fourier transformed.
The obtained complex spectrum is divided into two complex spectra
with equal magnitude and different phases. One of the phases is termed
as the cipher-text and the other is the cipher-key. During decryption,
the phases are added together and inverse Fourier transformed. The
absolute value of the obtained spectra gives the decrypted image [18].
Mathematically the EMD encryption may be represented as,

𝐼(𝑢, 𝑣) = 𝐹𝑇
{

√

𝑓 (𝑥, 𝑦) exp[𝑖2𝜋𝑟(𝑥, 𝑦)]
}

(1)

Here, 𝑓 (𝑥, 𝑦) is the intensity distribution of input image, 𝑟 (𝑥, 𝑦) is a
distribution of random values in the range [0, 1]. The complex spectrum
represented in Eq. (1) is now phase-truncated (PT) and amplitude-
truncated (AT).

𝑃 (𝑢, 𝑣) = 𝑃𝑇 [𝐼(𝑢, 𝑣)] (2)
𝐴(𝑢, 𝑣) = 𝐴𝑇 [𝐼(𝑢, 𝑣)] (3)

The two phases, one serving as the cipher-text and the other serving
as cipher-key may be mathematically represented as [18],

𝑃1(𝑢, 𝑣) =
𝐴(𝑢, 𝑣)∕2

cos[𝑃 (𝑢, 𝑣) − 𝜃(𝑢, 𝑣)]
exp[𝑖𝜃(𝑢, 𝑣)] (4)

𝑃2(𝑢, 𝑣) =
𝐴(𝑢, 𝑣)∕2

cos[𝑃 (𝑢, 𝑣) − 𝜃(𝑢, 𝑣)]
exp[𝑖{2𝑃 (𝑢, 𝑣) − 𝜃(𝑢, 𝑣)}] (5)

where, 𝜃 (𝑢, 𝑣) is a distribution of random values in the interval [0, 2𝜋].

2.2. The construction of Hash function

Employing the EMD methodology, a Hash function construction
is described. The 𝑛th bit-plane of an 8-bit grey scale image may be
represented as 𝑓𝑛(𝑥, 𝑦). Initially, an RPM represented as 𝜉0 (𝑥, 𝑦) =
exp [𝑖2𝜋𝑟 (𝑥, 𝑦)] is bonded to the first bit-plane of the image. The obtained
function is Fourier transformed as,

𝜌𝑛(𝑢, 𝑣) = 𝐹𝑇 {𝑓𝑛(𝑥, 𝑦)𝜉0(𝑥, 𝑦)} (6)

The Eq. (6) is subjected to phase-truncation (PT) operation,

𝜙𝑛(𝑢, 𝑣) = 𝑃𝑇 [𝜌𝑛(𝑢, 𝑣)] (7)

Eq. (6) is divided by Eq. (7) numerically and the resultant is
amplitude-truncated (AT),

𝜎𝑛(𝑢, 𝑣) = 𝐴𝑇
[

𝜌𝑛(𝑢, 𝑣)
𝜙𝑛(𝑢, 𝑣)

]

(8)

Fig. 1. A flowchart of the Hash function construction as described by the series
of mathematical expressions in Section 2.2. The rectangular boxes represent the
value of the functions before and after a mathematical operation. The double-
crossed circle represents a multiplication operation. The arrow symbols make
available the value of the function for the next mathematical operation. FT:
Fourier transform, PT: phase truncation, AT: amplitude truncation, EMD: equal
modulus decomposition.

An initial AM represented as 𝛿0 (𝑢, 𝑣) = [2𝜋𝑛 (𝑢, 𝑣)], where 𝑛 (𝑢, 𝑣) is
a distribution of random values in the range [0, 1] is used along with
the function represented in Eq. (8) to obtain two complex phases which
may be given as [18,19],

𝑃1𝑛(𝑢, 𝑣) =
𝜙𝑛(𝑢, 𝑣)

2 cos[𝜎𝑛(𝑢, 𝑣) − 𝜕𝑛−1(𝑢, 𝑣)]
exp[𝑖𝜎𝑛(𝑢, 𝑣)] (9)

𝑃2𝑛(𝑢, 𝑣) =
𝜙𝑛(𝑢, 𝑣)

2 cos[𝜎𝑛(𝑢, 𝑣) − 𝜕𝑛−1(𝑢, 𝑣)]
× exp[𝑖{2𝜎𝑛(𝑢, 𝑣) − 𝜕𝑛−1(𝑢, 𝑣)}] (10)

These phase functions are numerically obtained and are used to
generate RPM and AM to be used for the next bit-plane of the image.
The phase mask may be represented as,

𝜉𝑛(𝑢, 𝑣) = 𝑛𝑜𝑟𝑚
[

𝑃1𝑛(𝑢, 𝑣)𝜉𝑛−1(𝑢, 𝑣)
]

(11)

Similarly, the AM may be represented as,

𝛿𝑛(𝑢, 𝑣) = 𝑛𝑜𝑟𝑚
[

𝑃2𝑛(𝑢, 𝑣)𝛿𝑛−1(𝑢, 𝑣)
]

(12)

Here, 𝑛𝑜𝑟𝑚 represents normalization operation, which is numerically
applied to the function. Finally, for the 8-bit plane, the phase functions
are added and inverse Fourier transformed (IFT)

𝛼8(𝑥, 𝑦) = 𝐼𝐹𝑇
[

𝜉8(𝑢, 𝑣) + 𝛿8(𝑢, 𝑣)
]

(13)

Numerically generated additive white Gaussian noise (AWGN) with
constant seed is added to the function obtained in Eq. (13).

𝛽8(𝑥, 𝑦) = [
[

𝛼8(𝑥, 𝑦)
]

+ 𝐴𝑊𝐺𝑁] (14)

The function is recovered as an 8-bit intensity matrix, we may denote
it as 𝑔1(𝑥, 𝑦). This matrix is flipped upside down and separated into its
constituent bit-planes numerically to repeat the procedure. The 8-bit
intensity matrix obtained now may be denoted as 𝑔2(𝑥, 𝑦). This matrix is
compressed to obtain the Hash function. The block diagram of the Hash
function construction is shown in Fig. 1. To perform compression, the
function 𝑔2(𝑥, 𝑦) is Fourier transformed,

ℎ(𝑢, 𝑣) = 𝐹𝑇
[

𝑔2(𝑥, 𝑦)
]

(15)

The central region of the matrix ℎ (𝑢, 𝑣) is extracted as an 8 × 4 matrix.
This matrix is termed as the 256-bit Hash value of the input image. We
may represent the Hash operation as [16,17],

𝐻 = 𝐻𝑎𝑠ℎ
[

𝑓𝑛(𝑥, 𝑦)
]

(16)
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