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A B S T R A C T

This paper proposes a simple iterative algorithm to determine the optimum (in terms of the system capacity) set
of multiple orbital angular momentum (OAM) modes over Free space optical (FSO) communication beam for a
given receiver radius using generalized channel efficiency matrix. The optimum set is the same as the obtained
set from exhaustive search that was previously proposed in the literature but has a much lower complexity. The
proposed algorithm is especially efficient for large number of modes. The complexity reduction is in the order
of

(

2𝐍
)

∕𝐍2 when compared to the exhaustive search, where N is the pool size of available modes.

1. Introduction

Several studies have derived the capacity of orbital angular momen-
tum modes (OAM) beams as cross-talk probability distribution using
the received power model of OAM beams under different models of
turbulence either Kolmogorov as in [1] or non-Kolmogorov as in [2–
4]. Others have determined the equivalent channel matrix which de-
scribes the mode propagation and derives the channel efficiency matrix
representing the power correlation between the different modes under
turbulence [5,6]. This enabled the equivalence between the system in
that case and the multiple-input multiple-output (MIMO) system to
be established; therefore, equalization and compensation techniques
from the MIMO literature are performed to enhance the capacity [7].
However, the resulting capacity form encompasses multiple parameters
that make it intractable for further system analysis.

Following the recent literature focus concerned with the config-
urable generation of modes [8–10], it has been feasible to flexibly
generate as much modes as possible aiming at increasing the achievable
rates. However, unregulated increase in modes may cause deteriorated
performance due to the increasing cross-talk among modes which leads
to decrease in the achieved rates. For the above reason, it became
necessary to find a mechanism to guarantee we are using the suitable
modes for the highest communication gain that can justify the added
cost of generating and combining several modes. To the authors’ best
knowledge, there have not been any methodology to find the best
operating modes in OAM system except by trial and error through
extensive simulations to run exhaustive search algorithm, e.g., [6].
Analytically, we shall show that it is an unsolvable decision problem.
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Practically, the exhaustive search for the best transmission modes
may not be feasible in the presence of large number of available
modes in a system that is described by several parameters such as the
turbulence, the transmitter–receiver misalignment model, as well as the
number of modes and beams. This motivates the present work which
proposes a simple novel iterative algorithm to obtain the optimum set
of OAM modes for a given receiver’s radius in a beam propagating in
weak to medium turbulence.

To adequately formulate the modes-optimization algorithm as dis-
cussed in the sequel, a complete channel model should be used. There-
fore, we have included the cross talk effect resulting from poor receiver
alignment that was tackled in [11–14] and put it in a new closed form.
For a given total amount of fixed power, leakage mode power, receiver
area and misalignment drift, we obtain the optimal set of modes that
maximizes the achievable rate of OAM communication system using a
simple aggregation algorithm. Compared to the exhaustive search, the
proposed algorithm has a much lower complexity and also achieves
the same performance as the exhaustive search algorithm. Monte Carlo
simulations are provided to show that the optimal sets are properly
found.

The paper is organized as follows. Section 2 presents the system
model. Section 3 presents the novel simple optimization algorithm
for selecting the best OAM modes. Finally, Section 4 discusses the
algorithm’s optimality and the conclusion follows in Section 5.
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2. System model

Consider a Laguerre–Gaussian (LG) beam carrying single mode that
has the parameters defined in [2,15] with zero-order Laguerre function
carrying OAM mode ‘m’ affected by turbulence which has the model
defined in [4].

Assume that the beam is carrying the data signal denoted by Sm (t)
over this single mode ‘m’. The noise-free received waveform (denoted
by Um) for single mode is written as:

Um = Sm (t)

√

2
𝜋 w(z)2 (|m|) !

(
√

2r
w (z)

)m

.e
−

(

r2
)

w(z)2 eim𝜃ei(kz−𝜔t)

. e−
ik
(

r2
)

2𝑅𝑐 (z) e−i𝜑(z)e𝜓 (1)

Consider multiple ‘M’ beams where each beam is a single-mode
beam. Each beam is modulated with a single data stream (the data
streams are independent from one beam to another). The beams are then
collimated and coaxially multiplexed, therefore the resultant received
beam carry multiple modes. The beam can be written as:

y =
m(M)
∑

i=m(1)

√

Es
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where we put:hT =
[

h1, h2,…hM
]

=
√

Es
MPi

[

U1,U2,…UM
]

and S(t) =

[S1,S2,…SM].
We dropped the time variable ‘t’ for simplicity. Rc (z) = z+ zR2

z is the
radius of curvature, beam width at transmitter w0 and at receiver: w(z) =

w0
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𝜆 is the Rayleigh range, 𝜑 (z) = arctan
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)

is the Gouy phase, and 𝜆 is the beam wavelength. Esi is the symbol’s
average energy for data carried on mode ‘i’ and Pi is the total power
of mode ‘i’ which is equal for all of the used M modes. Following the
above model, each mode’s power equals to unity; Pi = 1. M is the actual
number of the utilized modes: {m(1),… ,m(M)} =

{

m1,… ,mM
}

.
The exponential term e𝜓 represents the first order Rytov approx-

imation for the turbulence induced by the channel. It is generally a
complex random variable that can be approximated by the lognormal
distribution in weak to moderate turbulence [15,16]. We have used non-
Kolmogorov generalized Von-Karman model for the spatial frequency
spectrum 𝜙𝑛 (K) of turbulence described in [6] as:

𝜙𝑛 (K) = 0.033𝑘2𝐿C2
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where 𝐿 is the propagation distance, Kl inner scale wave number
(=3.3𝑙0, 𝑙0 is the inner scale turbulence), Km outer scale wave number
(=5.92𝑙0), C2

n is the medium refractive index structure function de-
scribed in [15] its value ranges from 10−12 for strong turbulent medium
to 10−16 for weak turbulence. The turbulence experienced through
the beam propagation is modeled at the receiver using a turbulence
phase screen. The phase screen 𝜓 is a matrix that adds the equivalent
turbulence phase and amplitude to each point in the incidence plane
perpendicular to the beam propagation at the receiver and is a function
of the space coordinates (Cartesian [x,y,z] or polar: [r,𝜃,z]) and is
obtained as in [17]:
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where 𝛥x=𝛥y are screen resolution, K is the spatial frequency used,
𝑘𝑥, 𝑘𝑦 are the spatial frequencies in the x, y directions, N is the number
of elements in x or y directions, C and D are 𝑁 ×𝑁 matrices of normal
distribution values of zero mean and unit variance. The above expression

for the phase screen can be easily expressed in polar coordinates through
a transformation matrix D to obtain the corresponding 𝜓(𝑟, 𝜃) = 𝐷𝑆(𝑥, 𝑦)
that is used in Eq. (1).

The term eim𝜃 represents the orbital momentum for mode ‘m’. The
waveforms for different ‘m’ are mutually orthogonal [6,18].

At the receiver, the beam is power divided into M branches, each
branch is then matched with one of the beam modes—matching with
eim𝜃 . Ideally, in turbulence-free environment, only the target mode is
received at the output of its receiver branch. However; in the presence
of the turbulence, all the received modes’ branches output non-zero
power for every sent mode due to leakage from each sent mode to all
others. The target mode dominance is reduced as the turbulence strength
increases. The channel estimation is performed by sending pilot single
mode beam and correlating with e−in𝜃 at the receiver [18] (for every
mode n) followed by an integration process over the receiver area [6].
Thus for receiver radius ‘R’, the output of the nth correlator (matching
with mode ‘n’) for the transmit mode ‘m’ is:
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where |

|

Pnm|| is the leaked power from transmit mode m to mode n. The
parameters

[

Pnm
]

form a matrix that is known as the channel efficiency
coefficients matrix [6]. Nn is the thermal noise added at receiver branch
‘n’ with noise power 𝜎2Nn. Using the above receiver model, we can obtain
the ratio of the signal power to the interference and noise power for
mode ‘i’ (denoted by SINRi) and hence, the aggregate capacity of the
multi-mode beam carrying the modes: m (1) ,m (2)…m (M) is [19]:
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the superscript ‘M’ indicates we are in an M-modes operation, for
turbulence free media, we have:
m(M)
∑

n=m(1)
n≠m

PMmn = 0

and the capacity is increased by increasing the number of modes;
however, in fixed total power transmission scheme, adding modes
decreases each mode’s power to keep a fixed total power. Overall, the
capacity is practically limited by: (1) the total fixed beam power, (2) the
turbulence strength, and (3) the receiver size. In the case of non-zero
turbulence, the different modes cause interference to each other and
therefore limit the achieved data rate. Using Eq. (4), we can guarantee
a monotonic increase (with the number of modes) of the capacity by
enforcing the sum interfering modes power to be less than the power of
the intended mode (for every mode) if:
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or equivalently
m(M)
∑

n=m(1)
n≠m

PMmn < PMmm∀m. (8)
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