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A B S T R A C T

The diffraction of the beam edges affects the transmission of the orbital angular momentum (OAM) mode carried
by vortex beam. Based on the bandwidth-limited OAM orthogonal vortex basis set, we study the crosstalk
probability of the OAM mode carried by the Bessel Gaussian beam in marine-atmosphere turbulence. We find
that the crosstalk probability of the bandwidth-limited OAM mode is larger than that of the spiral plane mode.
The crosstalk probability of the bandwidth-limited OAM mode decreases with the increment of the inner scale
of turbulence, but this crosstalk probability increases with the increment of the outer scale of turbulence. A
Bessel Gaussian beam with optimum initial radius of beam, and long beam wavelength in the transmission
window is preferable for application. The energy of the OAM mode primarily spreads to adjacent state. Our
research confirms that the beamwidth factor of OAM mode should be added to the study of free-space optical
communication to make the calculation results closer to the realistic situations.

1. Introduction

In recent years, the propagation of orbital angular momentum
(OAM) mode through turbulence media has become a great interesting
issue because of their potential applications in the free-space optical
(FSO) communication as well as their interesting properties [1–6].
Numerous studies have attempted to explain the propagation char-
acteristics of OAM mode of vortex beam in atmospheric turbulence.
Based on the extended Huygens–Fresnel principle, K. Zhu et al. explored
the properties of Bessel Gaussian beams (BGBs) propagation in the
atmosphere turbulent [7]. For the partially coherent BGBs propagation,
B. Chen et al. found that the beams with higher source coherence can
be more influenced by atmospheric turbulence than those of lower
coherence [8]. Y. Zhu et al. explored the behavior of OAM modes
of the partially coherent modified BGBs (PCMBG) propagating in the
anisotropic and non-Kolmogorov turbulence of marine-atmosphere, and
they found that the OAM mode of PCMBG beams with long wavelength,
low quantum number, and a high spectral degree of coherence of the
source have stronger anti-turbulence interference ability [9]. J. Gao
et al. developed the models of average probability densities and the
normalized powers of signal/crosstalk OAM modes for the fractional
BGBs in the turbulence atmosphere of strong irradiance fluctuations.
They demonstrated that the increase of turbulence fluctuations can
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make the crosstalk stronger and more concentrated. Lower irradiance
fluctuation can give rise to higher normalized powers of the signal OAM
modes [10]. We know that, in the transmission of the light beam, the
beam edges which are similar to an aperture will produce the diffraction
of the light beam. The diffraction of the beam edges causes the beam
spreading and the spreading will affect the transmission performance
of optical signals. Therefore, it is deserved to consider the influence of
the diffraction of the beam edges when we study the OAM mode of
vortex beam propagating in atmospheric turbulence. However, to the
best of our knowledge, there has a little discussion about the effect of
the beam edges diffraction on the transmission of the OAM mode in
marine-atmosphere turbulence.

In this paper, we put forward a model of the crosstalk probability
of the bandwidth-limited OAM mode carried by BGBs. By studying
the crosstalk probability, we research the effect of the beam edges
diffraction on the vortex beam transmitting in marine-atmosphere
turbulence. This paper is organized as follows. In Section 2, we derive
the bandwidth-limited OAM orthonormal vortex basis set. In this paper,
the term ‘‘the bandwidth-limited OAM orthonormal vortex basis set’’
refers to the OAM orthonormal vortex basis set including the factor of
initial radius of the beam. In Section 3, we derive the expression of
the crosstalk probability of the bandwidth-limited OAM mode carried
by BGBs. The impacts of the beam edges diffraction and the channel
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parameters of optical communication links on crosstalk probability are
given in Section 4, and conclusions are given in Section 5.

2. The bandwidth-limited orthonormal vortex basis set

In optical vortex beam research, the limited transverse spatial coher-
ence of practical light sources means that radius vortex modes defined
using a circular aperture (or pupil) function are more appropriate in the
realistic situations. The simplest bandwidth-limited vortex beam can be
generated by the Fraunhofer diffraction of a plane wave by a spiral phase
plate with the transmission function

𝑆𝑚 (𝑟, 𝜑, 𝑧) = exp
(

i𝑚𝜑 + i𝑘𝑧𝑧
)

, (1)

through an transmitting aperture of the radius 𝜔0, it is also be called
initial radius of the beam. Here (𝑟, 𝜑, 𝑧) are cylindrical coordinates, 𝑟 is
the radial distance from the propagation axis, 𝜑 is the azimuth angle and
𝑧 is the distance along the propagation axis. i is the complex symbol, 𝑚
is OAM quantum number and 𝑘𝑧 is the component of the wave number
vector along in 𝑧 axis. To represent the wave form of the arbitrary beam
in similar bandwidth-limited situations, an orthonormal vortex basis set
characterized by OAM was recently reported for vortex beams [11],
including both the azimuthal and radial quantum numbers 𝑚 and 𝑝,
respectively. That is

𝑆𝑚𝑝 (𝑟, 𝜑, 𝑧) = 𝑁𝑚
𝑝 exp

(

i𝑚𝜑 + i𝑘𝑧𝑧
)

J𝑚
(

𝑘𝑝𝑚⟂ 𝑟
)

. (2)

In Eqs. (2), 𝑁𝑚
𝑝 = 1∕

[
√

2𝜋J𝑚+1
(

𝜆𝑝𝑚
)

]

is the normalization fac-
tor [11], 𝑘𝑝𝑚⟂ = 𝜆𝑝𝑚∕𝜔0 is the magnitude of the transverse wave
vector, 𝜆𝑝𝑚 is the (𝑝 + 1)th zero of the 𝑚th-order Bessel function and
J𝑚 is the 𝑚th-order first kind Bessel function [11]. Substituting 𝑁𝑚

𝑝 =

1∕
[
√

2𝜋J𝑚+1
(

𝜆𝑝𝑚
)

]

into Eq. (2), we have the bandwidth-limited OAM

orthonormal vortex basis set

𝑆𝑚𝑝 (𝑟, 𝜑, 𝑧) =
1

√

2𝜋J𝑚+1
(

𝜆𝑝𝑚
)

exp
(

i𝑚𝜑 + i𝑘𝑧𝑧
)

J𝑚
(

𝑘𝑝𝑚⟂ 𝑟
)

. (3)

3. The crosstalk probability of the bandwidth-limited OAM mode
carried by BGBs

It is know that under the conventional Rytov approximation, the
complex amplitude of BGBs is expressed by [12]

𝑢𝑚 (𝑟, 𝜑, 𝑧) = 𝑢𝑚0
(𝑟, 𝜑, 𝑧) exp [𝜓 (𝑟, 𝜑, 𝑧)] , (4)

where 𝜓 is the complex phase perturbations caused by the turbulence,
𝑚0 is an integer corresponding to the initial OAM quantum number and
𝑢𝑚0

(𝑟, 𝜑, 𝑧) is BGBs with OAM quantum number 𝑚0 at the 𝑧 plane in
the absence of turbulence. The 𝑢𝑚0

(𝑟, 𝜑, 𝑧) in Eqs. (4) can be expressed
as [13]

𝑢𝑚0
(𝑟, 𝜑, 𝑧) = 𝐴0

𝜔0
𝜔 (𝑧)

J𝑚0

(

𝑘𝑟𝑟
1 + i𝑧∕𝑧0

)

× exp

[

i

(

𝑘 −
𝑘2𝑟
2𝑘
𝑧 − 𝜁 (𝑧) + −1

𝜔2 (𝑧)

)]

× exp
[(

i𝑘
2𝑅 (𝑧)

)(

𝑟2 + 𝑘2𝑟
𝑧0
𝑘2

)

+ i𝑚0𝜑
]

, (5)

where 𝐴0 is a constant characterizing the beam power, 𝑘 =
(

𝑘2𝑧 + 𝑘
2
𝑟
)1∕2

is the wave number related to the wavelength 𝜆, 𝜔(𝑧) = 𝜔0[1+(𝑧∕𝑧0)2]1∕2

is the beam radius, 𝑧0 = 𝑘𝜔0
2∕𝜆 is the Rayleigh range and 𝜁 (𝑧) =

tan−1
(

𝑧∕𝑧0
)

is the Gouy phase. The angular half-aperture of the cone
𝜃𝐶

(

= 𝜔0∕𝑧
)

is related to the radial frequency, 𝑘𝑟 , as 𝑘𝑟 = 𝑘 sin
(

𝜃𝐶
)

.
Now, the complex amplitude 𝑢𝑚 (𝑟, 𝜑, 𝑧) is written by

𝑢𝑚 (𝑟, 𝜑, 𝑧) =
∑

𝑚
𝛽𝑚 (𝑟, 𝑧)𝑁𝑚

𝑝 exp
(

i𝑚𝜑 + i𝑘𝑧𝑧
)

J𝑚
(

𝑘𝑝𝑚⟂ 𝑟
)

. (6)

The expansion coefficient is given by the integral [14]

𝛽𝑚 (𝑟, 𝑧) =
𝑁𝑚
𝑝

2𝜋
exp

(

−i𝑘𝑧𝑧
)

∫

2𝜋

0
𝑢𝑚 (𝑟, 𝜑, 𝑧) exp (−i𝑚𝜑) J∗𝑚

(

𝑘𝑝𝑚⟂ 𝑟
)

d𝜑. (7)

Instead of the random variable 𝛽𝑚 (𝑟, 𝑧), we are usually interested in
the ensemble average over the turbulence statistics [15], i.e.

⟨|𝛽𝑚 (𝑟, 𝑧)|2⟩ =

(

𝑁𝑚
𝑝

2𝜋

)2

|J𝑚
(

𝑘𝑝𝑚⟂ 𝑟
)

|

2
∫

2𝜋

0 ∫

2𝜋

0
𝑢𝑚0

(𝑟, 𝜑, 𝑧)

× 𝑢∗𝑚0

(

𝑟, 𝜑′, 𝑧
)

exp
[

−i𝑚
(

𝜑 − 𝜑′)]

× exp
{

−𝜌−20
[

2𝑟2 − 2𝑟2 cos
(

𝜑 − 𝜑′)]} d𝜑d𝜑′, (8)

where 𝜌0 is the spatial coherence radius of a spherical wave propagating
in turbulence and given by [12]

𝜌0 =
[

𝜋2𝑘2𝑧
3 ∫

∞

0
𝜅3𝜙𝑛 (𝜅) d𝜅

]−1∕2
. (9)

In Eq. (9), 𝜙𝑛 (𝜅) is the turbulent spectrum of the marine atmosphere
and is given by [16]

𝜙𝑛 (𝜅) =
0.033𝐶2

𝑛
(

𝜅2 + 𝜅20
)11∕6

exp

(

− 𝜅2

𝜅2𝐻

)

×

[

1 − 0.061 𝜅
𝜅𝐻

+ 2.836
(

𝜅
𝜅𝐻

)7∕6
]

, (10)

where 𝜅 is the refractive index fluctuation spatial wave number,𝐶2
𝑛 is the

refractive index structure constant at the sea surface with units m−2∕3,
𝜅0 = 2𝜋∕𝐿0 , 𝐿0 is the outer scale of turbulence , 𝑙0 is the inner scale
of turbulence and 𝜅𝐻 = 3.41∕𝑙0. Substituting Eq. (10) into Eq. (9) and
making use of the following integral formula [17]

∫

∞

0
𝜅2𝜇

exp
(

−𝜅2∕𝜅2𝐻
)

(

𝜅2 + 𝜅20
)11∕6

d𝜅 = 1
2
𝜅2𝜇−8∕30 𝛤

(

𝜇 + 1
2

)

×U

(

𝜇 + 1
2
;𝜇 − 1

3
;
𝜅20
𝜅2𝐻

)

, 𝜇 > −1
2
, (11)

we have

𝜌−20 = 𝐶2
𝑛𝜋

2𝑘2𝑧

[

0.0055𝜅1∕30 𝛤 (2) U

(

2; 7
6
;
𝜅20
𝜅2𝐻

)

−0.0003355
𝜅4∕30
𝜅𝐻

𝛤
( 5
2

)

U

(

5
2
; 5
3
;
𝜅20
𝜅2𝐻

)

+0.015598
𝜅3∕20

𝜅7∕6𝐻

𝛤
( 31
12

)

U

(

31
12

; 21
12

;
𝜅20
𝜅2𝐻

)]

, (12)

where U (𝑎; 𝑏; 𝑧) is the confluent hypergeometric function of the second
kind and 𝛤 (𝑎) is the gamma function. Following Eqs. (8)–(12) and using
the following integral expression [17],

∫

2𝜋

0
exp

[

−i𝑛𝜑1 + 𝑥 cos
(

𝜑1 − 𝜑2
)]

d𝜑1 = 2𝜋 exp
(

−i𝑛𝜑2
)

I𝑛 (𝑥) , (13)

we can obtain

⟨|𝛽𝑚 (𝑟, 𝑧)|2⟩ =
(

𝐴0𝑁
𝑚
𝑝

)2 𝜔2
0

𝜔2 (𝑧)
|

|

|

J𝑚
(

𝑘𝑝𝑚⟂ 𝑟
)

|

|

|

2

× exp

[

−2𝜁 (𝑧) + −2
𝜔2 (𝑧)

− 2𝑟2

𝜌20

]

×
|

|

|

|

|

J𝑚0

(

𝑘𝑟𝑟
1 + i𝑧∕𝑧𝑟

)

|

|

|

|

|

2

I𝑚−𝑚0

(

2𝑟2

𝜌20

)

, (14)

where I𝑛(⋅) is the Bessel function of second kind with 𝑛 order. With the
help of Eqs. (5), (12) and (14), we have the average intensity of the
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