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A B S T R A C T

This paper reports a simple technique for suppressing the sidelobes outside the stop band of surface-corrugated
waveguide gratings. To ensure the sidelobe suppression, the dc coupling coefficient arising from the dc
component of the dielectric perturbation should be as small as possible. In the proposed waveguide grating,
the periodic corrugation whose depth is reduced toward the ends of the grating is formed on both sides across
the film-cladding boundary of the waveguide. The 2D simulation based on the coupled-mode theory has shown
that the sidelobes can be substantially suppressed while maintaining the reflection within the stop band of the
uniform grating. The proposed apodization technique is suitable for the sidewall corrugation from the viewpoint
of the ease of fabrication.

1. Introduction

Surface-corrugated waveguide gratings (CWGs) are suitable for in-
tegrated optics devices and have a wide range of applications such
as filters, laser source tuners, dispersion compensators, and grating
couplers since the 1970’s [1]. For example, in the grating devices
required for wavelength-division-multiplexing (WDM) applications, the
level of the sidelobes outside the stop band must be sufficiently reduced
to avoid crosstalk between the adjacent channels. Such waveguide
gratings are generally designed to satisfy desired characteristics by
changing the amplitude or/and phase of the periodic modulations of
refractive index or physical structure. The apodization can be made
by gradually reducing the coupling coefficients, i.e., the dielectric
perturbation induced by the waveguide deformation to zero at the ends
of the grating. In CWGs reported to date, the periodic corrugation
has been formed on the top (or bottom) surface or sidewalls of the
waveguide and its depth [2–5] and duty cycle [6] have been adjusted
to change the coupling coefficients. Although the device simulation
has been performed by the coupled-mode theory (CMT) [7], it seems
that the term of the dc coupling coefficient is often missing. The dc
component of the dielectric perturbation is always present and the
dc coupling coefficient given by it changes along the grating, shifting
local Bragg wavelengths. As a result, simply changing the magnitude of
dielectric perturbation leads to incomplete apodization [8]. Therefore
the apodization should be done under the condition that the dc dielectric
perturbation is zero or near zero. This issue has already been overcome
by introducing a phase shift between the two sidewall gratings or by
changing the phase of the grating [9,10]. Both techniques rely on a
modulation of the corrugation position, which leads to a change in the
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duty cycle. Fortunately, it appears that the dc coupling coefficient of
these treated gratings is small compared with the ac coupling coefficient.
Regarding the apodization based on the amplitude modulation, further
research is required.

In this paper, we present a simple and efficient method for suppress-
ing the sidelobes of CWGs based on the modulation of the corrugation
depth. The apodized CWG (ACWG) is constructed only by forming
the corrugation on both sides across the film-cladding boundary of
the waveguide to minimize the dc coupling coefficient. The numerical
simulation based on the CMT shows that the sidelobes can be suppressed
to a practical level. The proposed apodization technique is suitable for
the sidewall corrugation rather than for the surface corrugation for ease
of fabrication.

2. Device structure and analysis

We consider a slab-waveguide model and the propagation of the
fundamental TE0 mode since a three-dimensional (3D) waveguide
structure can be approximately replaced by a 2D structure using the
equivalent index method. The CMT based on the 2D model is sufficient
to examine the validity of the proposed apodization method. Fig. 1
shows three types of CWGs that are discussed in this paper. To shorten
the length of the grating, the corrugation is symmetrically formed along
both sides of the waveguide. If it is formed on one side, the coupling
coefficients decrease by half. Two single-mode waveguides of width
2d and refractive index 𝑛1 are connected to the grating section of
length L. The grating structure proposed in this paper is the ACWG
shown in Fig. 1(c). For the sake of completeness, the uniform CWG
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Fig. 1. Schematic of three kinds of CWGs; (a) uniform CWG, (b) conventional
ACWG, and (c) proposed ACWG. The film-cladding boundaries of the unper-
turbed waveguide are drawn with red broken lines.

Fig. 2. Expanded grating structure and the coordinate system for the calculation
of coupling coefficients. The film-cladding boundaries of the unperturbed
waveguide are drawn with red broken lines.

and conventional ACWG shown in Fig. 1(a) and (b) are also taken into
account.

To analyze the reflection properties of these CWGs, we employ the
conventional CMT [7] that describes an interaction between a forward
mode and an identical backward mode. We express the electric field of
these two waves as 𝐸+

𝑦 = 𝑎 (𝑧)𝐹 (𝑥) 𝑒𝑗(𝜔𝑡−𝛽𝑧) and 𝐸−
𝑦 = 𝑏 (𝑧)𝐹 (𝑥) 𝑒𝑗(𝜔𝑡+𝛽𝑧),

where 𝛽 and F (x) are the propagation constant and the transverse
field distribution of the TE0 mode in the unperturbed waveguide,
respectively. Here F (x) is normalized so that the power flow in the
𝑧 direction may become unity. When the synchronization condition is
approximately satisfied (𝛽 ≈ 𝜋∕𝛬, where 𝛬 is the grating period), the
change of the modal amplitudes 𝑎(𝑧) and 𝑏(𝑧) can be expressed as [7]
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⎩

𝑑𝑎 (𝑧)
𝑑𝑧
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(1)

where 𝛿 = 𝛽 − 𝜋∕𝛬 = 𝛽 − 𝛽𝐷 = 𝛽 − 2𝜋
𝜆𝐷

𝑛𝑒𝑓𝑓 is the detuning
from synchronism, 𝜆𝐷 is the design wavelength, 𝑛𝑒𝑓𝑓 is the effective
mode index, 𝜎 is the dc coupling coefficient, and 𝜅 is the ac coupling

Fig. 3. Dependence of the coupling coefficients 𝜎 and 𝜅 on the corrugation
depth 2h for the uniform CWG.

coefficient. These two coupling coefficients are given by

𝜎 =
𝜔𝜀0
4 ∫
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𝛥𝜀0 (𝑥)𝐹 (𝑥)2𝑑𝑥 (2)
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𝛥𝜀1(𝑥)𝐹 (𝑥)2𝑑𝑥 (3)

where 𝛥𝜀0(𝑥) and 𝛥𝜀1(𝑥) are the first (dc) and second (ac) terms in a
Fourier series of the difference 𝛥𝜀(𝑥, 𝑧) of the actual relative dielectric
constant from the unperturbed distribution 𝜀(𝑥, 𝑧). If the grating is
uniform along z, closed-form solutions for Eq. (1) can be found when
appropriate boundary conditions are specified. For the non-uniform
gratings shown in Fig. 1(b) and (c), we can numerically solve the
coupled-mode equations by a piecewise-uniform approach [11,12],
where the grating is approximated by a number of uniform grating
sections.

A closed-form expression for coupling coefficients 𝜎 and 𝜅 is required
in the actual calculation. Fig. 2 shows the partly expanded grating struc-
ture. The corrugation depth is 2c and the duty cycle of the corrugation is
𝛼. Since the duty cycle will be set to 50% (𝛼 = 0.5), we assume that the
film-cladding boundaries of the unperturbed waveguide are located at
the middle of the corrugation depth (x=u) [13], which are drawn with
red broken lines in Figs. 1 and 2. For the gratings shown in Fig. 1(a) and
(c), their unperturbed waveguides are the same as the input waveguide
of width 2d (i.e., 𝑢 = 𝑑). On the other hand, the boundary defined by
𝑥 = 𝑢 is a function of the position z along the grating for the grating
shown in Fig. 1(b). Note that the coupling coefficients depend on the
choice of the unperturbed waveguide.

Under such an assumption, the perturbation 𝛥𝜀(𝑥, 𝑧) can be written
as
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,

for 𝑢 + 𝑐 > 𝑥 > 𝑢
0, otherwise

(4)

where the half space 𝑥 > 0 is considered for simplicity. When 𝛼 = 0.5,
we have 𝛥𝜀0 (𝑥) = −(𝑛21 − 𝑛20)∕2 for 𝑢 > 𝑥 > 𝑢− 𝑐 and 𝛥𝜀0 (𝑥) = (𝑛21 − 𝑛20)∕2

for 𝑢 + 𝑐 > 𝑥 > 𝑢. On the other hand, 𝛥𝜀1 (𝑥) = (𝑛21 − 𝑛20)∕𝜋 for
𝑢 + 𝑐 > 𝑥 > 𝑢 − 𝑐. Therefore it is clear from Eqs. (2) and (3) that the
dc coupling coefficient 𝜎 is smaller than the ac coupling coefficient 𝜅.
It is also found that the coefficient 𝜅 becomes maximum when 𝛼 = 0.5.
When the corrugation depth 2c is small enough so that we can replace
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