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A B S T R A C T

The efficiency of Free Electron Laser (FEL) Oscillator devices is a fairly complicated function of the various
parameters which characterize the device itself. We explore the relevant dependences by the use of the scaling
formulas describing the FEL Oscillator dynamics and providing the relevant design elements. We obtain a
quantitative dependence of the efficiency on the key FEL parameters (small signal gain coefficient, saturation
intensity, electron beam qualities...) and discuss the use of the results obtained in the paper as a further element
for the FEL Oscillator optimization.

1. Introduction

The efficiency of Free Electron Laser (FEL) devices determines the
amount of power which is transferred from the electron to the optical
beam [1]. The problems associated with the relevant optimization
have been one of the pivotal point of their design strategy, since the
early proposals. The possibility of enhancing the output power by the
use of undulators with non-constant parameters had been considered
since the very beginning of the study of FEL amplifiers [2]. Tapered
undulators have provided significant increase of the efficiency in devices
operating at long wave-lengths [3], but, regarding X-ray SASE regime,
the efficiency is limited to few per-mills by the values of the Pierce
parameter 𝜌 and by an insufficient gain guiding [4].

In the case of FEL devices in the oscillator regime (FELo) the
reference parameter, ruling the power exchange between electrons and
radiation, is associated with the inverse of the number of undulator
periods. It must however be stressed that the inclusion of the cavity
losses (active and passive) is a further element to be accounted for in the
design optimization, through an appropriate definition of the extraction
efficiency [5,6]. The problem is always under active consideration
and,in a more recent times, significant effort towards the realization
of high efficiency FELs has been accomplished within the framework
of the TESSA/O proposal [7,8] in which a scheme of a high efficiency
FEL oscillator, based on the application of the tapering enhanced
stimulated superradiant amplification scheme (hence the acronym) has
been proposed. Very roughly, talking about FEL oscillators, we can
split the efficiency optimization in two parts. The first concerns the
power transfer from electron to radiation, which may occur through

* Correspondence to: ENEA R.C. Frascati, via Enrico Fermi 45, 00044 Frascati (Rome), Italy.
E-mail address: alberto.petralia@enea.it (A. Petralia).

tapered undulators. The second is associated with the extraction of the
intracavity equilibrium power from the resonator.

In this paper we deal with extraction efficiency optimization of a
constant parameter FEL oscillator, within the framework of a semi-
analytical model. We use theoretical concepts emerged during the
eighties and nineties of the last century [9–17] to elaborate a procedure
yielding design including in an easily computational scheme all the
physical quantities allowing the design and the optimization of a FEL
oscillator. The starting point of our analysis is adapting to the FEL cases a
procedure largely exploited in conventional laser physics [18]. The goal
of the paper is that of obtaining the optimal extraction conditions using
semi-analytical formulas providing the extraction efficiency in terms of
the parameters characterizing the operation of a FELo.

Before entering the specific details of FELo optimization, we would
like to highlight and recall that concepts analogous to those we are going
to use in the rest of the paper have been already developed for the laser
power output, relative to a lightly coupled laser oscillator [18], i.e. to
an oscillator whose mirrors have a reflectivity slightly less than one.
It can be shown [18] that the total output intensity in the steady-state
oscillation condition can be expressed as:

𝐼𝑜𝑢𝑡 = 𝛿𝑒

[

2𝛼𝑚0𝑝𝑚
𝛿0 + 𝛿𝑒

− 1
]

𝐼𝑆
2

(1)

where 2𝛼𝑚0𝑝𝑚 is the unsaturated round-trip laser gain in the medium,
2𝛼𝑚0 being the unsaturated gain and 𝑝𝑚 two times the medium length,
𝛿0 is the internal cavity loss and 𝛿𝑒 is the output coupling, i.e. the total
fractional power coupled out per round trip through the mirrors. We
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Table 1
Reference parameters for the design of the FEL devices. We have denoted by
𝐵0 the amplitude of the undulator magnetic field, 𝑒 and 𝑚𝑒 are respectively the
electron charge and mass, 𝑐 is the speed of light, 𝛾 is the relativistic Lorentz
factor and 𝐽0, 𝐽1 are the Bessel function of order 0 and 1.

𝑁 Number of und. periods
𝜆𝑢 Undulator period
𝐿 = 𝑁𝜆𝑢 Undulator length
𝜆0 =

1
2𝛾2

(

1 +𝐾∗2) Resonance wavelength
𝐽 Electron beam current density
𝐼𝐴 Alfven current
𝐾 = 𝑒𝐵0𝜆𝑢∕2𝜋𝑚𝑒𝑐 Undulator parameter
𝐾∗ = 𝐾∕

√

2 For helical undulator
𝐾∗ = 𝐾 For planar undulator
𝜉 = 1

2
𝐾∗2(1 +𝐾∗2)−1

𝑓𝑏 = 1 Bessel factor for helical undulator
𝑓𝑏 = 𝐽0 (𝜉) − 𝐽1 (𝜉) Bessel factor for planar undulator

have denoted by 𝐼𝑆 the saturation intensity of an atomic or molecular
laser. The optimum coupling coefficient is obtained by differentiating
Eq. (1) with respect to 𝛿𝑒:

𝛿𝑒,𝑜𝑝𝑡 =
√

2𝛼𝑚0𝑝𝑚𝛿0 − 𝛿0. (2)

The output intensity obtained in correspondence of the optimum output
coupling is therefore:

𝐼𝑜𝑢𝑡,𝑜𝑝𝑡 =

(

1 −

√

𝛿0
2𝛼𝑚0𝑝𝑚

)2

𝛼𝑚0𝑝𝑚𝐼𝑆 . (3)

It is possible to recognize in the term 𝛼𝑚0𝑝𝑚𝐼𝑆 the available intensity
𝐼𝑎𝑣𝑎𝑖𝑙 from the laser medium, whence the extraction efficiency can be
defined as 𝐸𝑒𝑥 = 𝐼𝑜𝑢𝑡∕𝐼𝑎𝑣𝑎𝑖𝑙:

𝐸𝑒𝑥 =
(

𝛿𝑒
𝛿0 + 𝛿𝑒

−
𝛿𝑒

2𝛼𝑚0𝑝𝑚

)

. (4)

The maximum value for the extraction efficiency is obtained for 𝛿𝑒 =
𝛿𝑒,𝑜𝑝𝑡:

𝐸∗
𝑒𝑥 =

(

1 −

√

𝛿0
2𝛿𝑚0𝑝𝑚

)2

. (5)

Eq. (5) is extremely important in the sense that even for very small inter-
nal cavity losses the extraction efficiency can be significantly reduced.

2. FEL oscillator efficiency

The intracavity dynamics of FEL oscillators is described in terms of
the pivotal parameters, small-signal gain coefficient 𝑔0 and saturation
intensity 𝐼𝑆 [19], which are implicitly contained in the definition of the
Colson’s dimensionless amplitude and current [1].

The phenomenological role of these parameters is the same as for the
ordinary lasers and the saturation intensity is defined as the intracavity
power density that halves the small-signal (unsaturated) gain. In the
following we will use the notation of FEL devices and specify small-
signal and saturation intensity as

𝑔0 =
16𝜋
𝛾

|𝐽 |
𝐼𝐴

𝜆0𝐿𝑁
2𝜉 𝑓 2

𝑏

𝐼𝑆 = 𝑐
8𝜋

(

𝑚𝑒𝑐2

𝑒

)2
( 𝛾
𝑁

)4
(

𝜆𝑢𝐾
∗𝑓𝑏

)−2.
(6)

Their importance stems from the fact that they merge most of the
quantities specifying the design parameters of the device itself, which
are summarized in Table 1 for later convenience.

The following identity, where 𝑃𝐸 is the e-beam Power density, links
small signal gain coefficient 𝑔0 and saturation intensity 𝐼𝑠

𝑔0𝐼𝑆 = 1
2𝑁

𝑃𝐸

𝑃𝐸 = 𝐸 ⋅
|𝐽 |
𝑒

=
𝑚𝑒𝑐2

𝑒
𝛾 |𝐽 | = 2𝑁𝑔0𝐼𝑆

(7)

and stress the phenomenological importance of these two parameters.
Their product yields the maximum power transferred from the electrons
to the laser, in the case of a FEL (be it an amplifier or an oscillator)
operating with a constant parameter undulator.

The problem is however more complicated than it may appear,
because Eq. (7) does not include effects due to high gain or inhomo-
geneous broadening effects, which will be discussed afterwards. We
remind therefore that the maximum small-signal gain is a non-linear
function of 𝑔0 which can be approximated as [20]

𝐺𝑀 ≅ 𝑔0𝑓 (𝑔0)
𝑓 (𝑔0) = 0.85 + 0.192𝑔0 + 4.23 ⋅ 10−3𝑔20

(8)

and that an analogous correction affects the saturation intensity, whose
dependence on the small-signal coefficient is expressed by the formula

𝐼𝑆 (𝑔0) =
1.078 ⋅ 𝐼𝑆
𝑃
(

𝑔0
)

𝑃
(

𝑔0
)

= 1 + 0.19 𝑔0 − 8.7 ⋅ 10−3𝑔20 + 2.7 ⋅ 10−4𝑔30 .
(9)

It should be noted that even though the following identity holds
𝐺𝑀𝐼𝑆 (𝑔0)
0.85𝑃𝐸

≅ 1
2𝑁

, (10)

which states that the product of gain and saturation intensity is almost
insensitive to the gain coefficient, we cannot draw the conclusion that
the FEL oscillator efficiency is just provided by the inverse of the number
of undulator periods.

The identity in Eq. (7) is barely correct for an amplifier but to provide
that of an oscillator, we should proceed through the following steps

1. Define the equilibrium intracavity intensity by means of the
cavity losses of the device, namely [20]

𝐼𝑒 =
(
√

2 + 1
)
⎛

⎜

⎜

⎝

√

1 − 𝜂
𝜂

𝐺𝑀 − 1
⎞

⎟

⎟

⎠

𝐼𝑆 . (11)

2. Evaluate the output power by introducing the extraction losses .

The last point will be considered later and for the moment we define the
intracavity equilibrium power efficiency 𝐸𝑓 , whose derivation proceeds
as it follows1

𝐸𝑓 (𝑔0, 𝜂) ≅
𝜒(𝑔0, 𝜂)
2𝑁

,

𝐸𝑓 (𝑔0, 𝜂) =
𝐼𝑒
𝑃𝐸

𝜒(𝑔0, 𝜂) =
(
√

2 + 1
)
⎛

⎜

⎜

⎝

√

1 − 𝜂
𝜂

𝑓 (𝑔0)
𝑔0

− 1
𝑔0

⎞

⎟

⎟

⎠

1.078
𝑃 (𝑔0)

.

(12)

In the previous equation the function 𝜒(𝑔0, 𝜂) yields the FEL Oscil-
lator intracavity efficiency with the inclusion of high-gain corrections
from Eqs. (8), (9) and by using the identity (7).

The behavior of 𝜒(𝑔0, 𝜂) vs. 𝑔0 for different values of the losses is
given in Fig. 1, which indicates that an optimum values of the small
signal coefficient exists, which in turns defines an optimum current.

The condition 𝜒(𝑔0, 𝜂) = 0 defines the threshold gain coefficient
𝑔𝑡ℎ0 (𝜂), which is a function of the cavity losses. In correspondence of
such a value we can define the so called starting current density as

𝐽 𝑡ℎ(𝜂) =
𝛾

16𝜋
1

𝑁2𝜉𝑓 2
𝑏

𝐼𝐴
𝜆0𝐿

𝑔𝑡ℎ0 (𝜂). (13)

The analytical expression for 𝑔𝑡ℎ0 (𝜂) obtained by means of the Cardano’s
formula [21] may be approximated as

𝑔𝑡ℎ0 (𝜂) ≅ 2.214
(√

1 + 1.063
𝜂

1 − 𝜂
− 1

)

. (14)

The behavior of 𝑔𝑡ℎ0 (𝜂) is plotted in Fig. 2.

1 In the following for reason of continuity we will denote the losses by 𝜂 and
not with 𝛿 as is from Eqs. (1) to (5).
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